TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141317 times)
  2. FAT32 Library (74154 times)
  3. Network Ethernet Library (58737 times)
  4. USB Device Library (48834 times)
  5. Network WiFi Library (44544 times)
  6. FT800 Library (44117 times)
  7. GSM click (30857 times)
  8. mikroSDK (29699 times)
  9. PID Library (27359 times)
  10. microSD click (27273 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

RS232 Isolator Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: RS232

Downloaded: 269 times

Not followed.

License: MIT license  

RS232 Isolator Click is a fully isolated dual transceiver Click, used to provide secure and easy UART to RS232 conversion, with the galvanic isolation.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "RS232 Isolator Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "RS232 Isolator Click" changes.

Do you want to report abuse regarding "RS232 Isolator Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


RS232 Isolator Click

RS232 Isolator Click is a fully isolated dual transceiver Click, used to provide secure and easy UART to RS232 conversion, with the galvanic isolation.

rs232isolator_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Apr 2020.
  • Type : UART GPS/GNSS type

Software Support

We provide a library for the Rs232Isolator Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Rs232Isolator Click driver.

Standard key functions :

  • Config Object Initialization function.

    void rs232isolator_cfg_setup ( rs232isolator_cfg_t *cfg );

  • Initialization function.

    RS232ISOLATOR_RETVAL rs232isolator_init ( rs232isolator_t ctx, rs232isolator_cfg_t cfg );

Example key functions :

  • Function settings RTS state.

    void rs232_2_set_rts ( rs232isolator_t *ctx, uint8_t state );

  • Read CTS state.

    uint8_t rs232_2_get_cts ( rs232isolator_t *ctx );

  • Function for send command.

    void rs232isolator_send_command ( rs232isolator_t ctx, char command );

Examples Description

This example reads and processes data from RS232 Isolator clicks.

The demo application is composed of two sections :

Application Init

Initializes driver.


void application_init ( void )
{
    log_cfg_t log_cfg;
    rs232isolator_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    rs232isolator_cfg_setup( &cfg );
    RS232ISOLATOR_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    rs232isolator_init( &rs232isolator, &cfg );
}

Application Task

Reads the received data.


void application_task ( void )
{
#ifdef DEMO_APP_RECEIVER
    rs232isolator_process( );
#endif

#ifdef DEMO_APP_TRANSMITER
    rs232isolator_send_command( &rs232isolator, TEXT_TO_SEND );
    rs232isolator_process( );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#endif    
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Rs232Isolator

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

NeoMesh 915MHz Click

0

NeoMesh Click - 915MHz is a compact add-on board with a low-power, long-range transceiver, ideal for Mesh wireless networking. This board features the NC1000C-9, a wireless Mesh network module from NeoCortec. With an additional antenna that MikroE offers connected to the module’s u.Fl connector, you can create a fully functional wireless Mesh network node that will work in the Sub-GHz frequency band of 915MHz. The module has a generic application layer that can configured to suit applications.

[Learn More]

Secure 2 click

0

Secure 2 click carries the ATAES132A, a cryptographic coprocessor with secure hardware-based key storage from Microchip. The click is designed to run on either 3.3V or 5V power supply. Secure 2 click communicates with the target microcontroller over SPI and I2C interface.

[Learn More]

Hall Current 10 Click

0

Hall Current 10 Click is a compact add-on board that provides economical and precise AC or DC current sensing solutions. This board features the ACHS-7194, a fully integrated Hall-effect-based isolated linear current sensor designed for the current range of ±40A from Broadcom Limited. Inside ACHS-7194 is a precise, low-offset, linear Hall circuit with a copper conduction path located near the surface of the die. Applied current flowing through this copper conduction path generates a magnetic field that the differential Hall sensors convert into a proportional voltage, where after that, the user is given the option to process the output voltage as an analog or digital value. This Click board™ is suitable for AC or DC current-sensing in industrial, commercial, and communications systems.

[Learn More]