TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (404 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141109 times)
  2. FAT32 Library (73901 times)
  3. Network Ethernet Library (58552 times)
  4. USB Device Library (48723 times)
  5. Network WiFi Library (44376 times)
  6. FT800 Library (43976 times)
  7. GSM click (30721 times)
  8. mikroSDK (29478 times)
  9. PID Library (27299 times)
  10. microSD click (27097 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Ammonia Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Gas

Downloaded: 343 times

Not followed.

License: MIT license  

Ammonia Click is an Ammonia detection (NH3) sensor, based on the MQ-137 gas sensor. This gas sensor has a sensitive layer made of SnO2, which changes its resistance when exposed to ammonia.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Ammonia Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Ammonia Click" changes.

Do you want to report abuse regarding "Ammonia Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Ammonia Click

Ammonia Click is an Ammonia detection (NH3) sensor, based on the MQ-137 gas sensor. This gas sensor has a sensitive layer made of SnO2, which changes its resistance when exposed to ammonia.

ammonia_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jul 2020.
  • Type : SPI type

Software Support

We provide a library for the Ammonia Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Ammonia Click driver.

Standard key functions :

  • Config Object Initialization function.

    void ammonia_cfg_setup ( ammonia_cfg_t *cfg );

  • Initialization function.

    AMMONIA_RETVAL ammonia_init ( ammonia_t ctx, ammonia_cfg_t cfg );

Example key functions :

  • Sensor heater function

    void ammonia_heater ( ammonia_t *ctx, uint8_t state );

  • Read data function

    uint32_t ammonia_data_read ( ammonia_t *ctx );

Examples Description

This demo application reads ADC value.

The demo application is composed of two sections :

Application Init

Initalizes SPI driver, turns on the heater, and makes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    ammonia_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    ammonia_cfg_setup( &cfg );
    AMMONIA_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ammonia_init( &ammonia, &cfg );
    Delay_ms ( 100 );

    ammonia_heater( &ammonia, AMMONIA_HEATER_ON );
    Delay_ms ( 1000 );

    log_printf( &logger, "-------------------- \r\n" );
    log_printf( &logger, "   Ammonia  Click    \r\n" );
    log_printf( &logger, "-------------------- \r\n" );
}

Application Task

This is an example that shows the capabilities of the ADC 9 Click by reading ADC value and displaying it via UART.


void application_task ( void )
{
    spi_adc_value = ammonia_data_read( &ammonia );

    log_printf( &logger, "ADC value: %s \r\n", spi_adc_value );

    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Ammonia

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Watchdog click

5

Watchdog Click is a compact add-on board that contains a simple countdown timer for a wide variety of applications. This board features the TPS3430, a standalone watchdog timer with a programmable watchdog window and programmable reset delay from Texas Instruments.

[Learn More]

Stepper 22 Click

0

Stepper 22 Click is a compact add-on board designed for precise motion control of bipolar stepper motors and brushed DC motors. This board features the DRV8711, a bipolar stepper motor gate driver from Texas Instruments, which uses external N-channel MOSFETs to drive motors with up to 5A of output current. The board features a wide range of microstepping options from full-step to 1/256-step, adaptive blanking time, and various current decay modes, ensuring smooth and accurate motor operation. Control is achieved via a standard SPI interface and STEP/DIR inputs, with additional management through an onboard I2C-configurable GPIO expander.

[Learn More]

Expand 3 click

6

EXPAND 3 click is an accessory board in mikroBUS form factor. It includes an 8-channel programmable I/O expander DS2408 that communicates with the target board MCU through a 1-Wire interface (15.3 kbps or 100kbps).

[Learn More]