TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142123 times)
  2. FAT32 Library (75419 times)
  3. Network Ethernet Library (59568 times)
  4. USB Device Library (49556 times)
  5. Network WiFi Library (45362 times)
  6. FT800 Library (45004 times)
  7. GSM click (31486 times)
  8. mikroSDK (30568 times)
  9. microSD click (27902 times)
  10. PID Library (27637 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Accel 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.23

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 530 times

Not followed.

License: MIT license  

Accel 5 Click features an ultra-low power triaxial accelerometer sensor, labeled as the BMA400. This Click board™ allows linear motion and gravitational force measurements in ranges of ±2 g, ±4 g, ±8, and ±16 g in three perpendicular axes.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Accel 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Accel 5 Click" changes.

Do you want to report abuse regarding "Accel 5 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

Accel 5 Click

Accel 5 Click features an ultra-low power triaxial accelerometer sensor, labeled as the BMA400. This Click board™ allows linear motion and gravitational force measurements in ranges of ±2 g, ±4 g, ±8, and ±16 g in three perpendicular axes.

accel5_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Accel5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Accel5 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void accel5_cfg_setup ( accel5_cfg_t *cfg );

  • Initialization function.

    ACCEL5_RETVAL accel5_init ( accel5_t ctx, accel5_cfg_t cfg );

  • Click Default Configuration function.

    void accel5_default_cfg ( accel5_t *ctx );

Example key functions :

  • Functions for write one byte in register

    void accel5_write_byte ( accel5_t *ctx, uint8_t reg, uint8_t reg_data );

  • Functions for read byte from register.

    uint8_t accel5_read_byte ( accel5_t *ctx, uint8_t reg );

  • Functions for read data from register.

    uint16_t accel5_read_data ( accel5_t *ctx, uint8_t reg );

Examples Description

This application allows linear motion and gravitational force measurements.

The demo application is composed of two sections :

Application Init

Initializes Driver init and settings accelerometer data range and mode.


void application_init ( void )
{
log_cfg_t log_cfg;
    accel5_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    accel5_cfg_setup( &cfg );
    ACCEL5_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    accel5_init( &accel5, &cfg );
}

Application Task

Reads the accel X / Y / Z axis data, every 500 ms.


void application_task ( void )
{
 x_axis_data = accel5_get_axis( &accel5, ACCEL5_X_AXIS );
    log_printf ( &logger, " X axis : %d \r\n  ", x_axis_data );

    y_axis_data = accel5_get_axis( &accel5, ACCEL5_Y_AXIS );
    log_printf ( &logger, " Y axis : %d \r\n  ", y_axis_data );

    z_axis_data = accel5_get_axis( &accel5, ACCEL5_Z_AXIS );
    log_printf ( &logger, " Z axis : %d \r\n  ", z_axis_data );

    Delay_ms ( 500 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Accel5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Mikromedia 3 for STM32F4 Capacitive

0

This project contains example for testing modules on Mikromedia 3 for STM32F4 Capacitive

[Learn More]

Barometer 4 Click

0

Barometer 4 Click is a compact add-on board used to measure air pressure in a specific environment. This board features the ICP-10111, a high accuracy low power barometric and temperature sensor from TDK InvenSense. The ICP-10111 is based on MEMS capacitive technology providing ultra-low noise at the lowest power, enabling industry-leading relative accuracy, sensor throughput, and temperature stability. It comes with a configurable host interface that supports I2C serial communication and measures pressure in a range from 30kPa up to 110kPa with an accuracy of ±1Pa over a wide operating temperature range. This Click board™ is suited for various pressure-based applications, especially when low power consumption is required, home appliances such as airflow control in HVAC, water level detection, vertical velocity monitoring, weather forecasting, and many more.

[Learn More]

EERAM 3v3 Click

0

EERAM 3.3V Click is a static RAM (SRAM) memory Click board™ with the unique feature - it has a backup non-volatile memory array, used to store the data from the SRAM array. Since the SRAM is not able to maintain its content after the power loss, the non-volatile EEPROM backup can be a very handy addition that can be used to preserve the data, even after the power loss event. This is a very useful feature when working with critical or sensitive applications. The memory backup procedure can be executed both automatically and manually. When it is set to work in the manual mode, the onboard capacitor will act as a power source with enough power to complete the backup cycle. The power-on backup restore mode is also available, taking only about 25ms to complete.

[Learn More]