TOP Contributors

  1. MIKROE (2656 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136816 times)
  2. FAT32 Library (69983 times)
  3. Network Ethernet Library (55953 times)
  4. USB Device Library (46274 times)
  5. Network WiFi Library (41892 times)
  6. FT800 Library (41203 times)
  7. GSM click (28990 times)
  8. PID Library (26420 times)
  9. mikroSDK (26376 times)
  10. microSD click (25383 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

BEE click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: ZigBee

Downloaded: 133 times

Not followed.

License: MIT license  

The click is designed to run on 3.3V power supply only.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "BEE click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "BEE click" changes.

Do you want to report abuse regarding "BEE click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


BEE click

BEE click features MRF24J40MA 2.4 GHz IEEE 802.15.4 radio transceiver module from Microchip.

bee_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : May 2020.
  • Type : SPI type

Software Support

We provide a library for the Bee Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Bee Click driver.

Standard key functions :

  • bee_cfg_setup Config Object Initialization function.

    void bee_cfg_setup ( bee_cfg_t *cfg );
  • bee_cfg_setup Config Object Initialization function.

    err_t bee_init ( bee_t *ctx, bee_cfg_t *cfg );

Example key functions :

  • bee_read_rx_fifo Read RX FIFO function

    void bee_read_rx_fifo ( bee_t *ctx, uint8_t *rx_data );
  • bee_write_tx_normal_fifo Write TX normal FIFO function

    void bee_write_tx_normal_fifo ( bee_t *ctx, uint16_t address_tx_normal_fifo, uint8_t *tx_data );

Examples Description

This example demonstrates the use of an BEE click board by showing the communication between the two click boards.

The demo application is composed of two sections :

Application Init

Initializes the driver and configures the click board.


void application_init ( void )
{
    log_cfg_t log_cfg;
    bee_cfg_t cfg;
    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    bee_cfg_setup( &cfg );
    BEE_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    bee_init( &bee, &cfg );

    for ( uint8_t cnt = 0; cnt < 2; cnt++ )
    {
        short_address1[ cnt ] = 1;
        short_address2[ cnt ] = 2;
        pan_id1[ cnt ] = 3;
        pan_id2[ cnt ] = 3;
    }

    for ( uint8_t cnt = 0; cnt < 8; cnt++ )
    {
        long_address1[ cnt ] = 1;
        long_address2[ cnt ] = 2;
    }

    log_printf( &logger, "    Reset and WakeUp     \r\n"  );
    bee_hw_reset( &bee );
    bee_soft_reset( &bee );
    bee_rf_reset( &bee );
    bee_enable_immediate_wake_up( &bee );

#ifdef DEMO_APP_TRANSMITTER
    // Transmitter mode
    log_printf( &logger, " Application Mode: Transmitter\r\n" );
    tx_data_fifo[0]  = BEE_HEADER_LENGHT;
    tx_data_fifo[1]  = BEE_HEADER_LENGHT + BEE_DATA_LENGHT;
    tx_data_fifo[2]  = 0x01;                        // control frame
    tx_data_fifo[3]  = 0x88;
    tx_data_fifo[4]  = 0x23;                        // sequence number
    tx_data_fifo[5]  = pan_id2[1];                  // destinatoin pan
    tx_data_fifo[6]  = pan_id2[0];
    tx_data_fifo[7]  = short_address2[0];           // destination address
    tx_data_fifo[8]  = short_address2[1];
    tx_data_fifo[9]  = pan_id1[0];                  // source pan
    tx_data_fifo[10] = pan_id1[1];
    tx_data_fifo[11] = short_address1[0];           // source address
    tx_data_fifo[12] = short_address1[1];
    memcpy( &tx_data_fifo[ 13 ], &data_tx1[ 0 ], BEE_DATA_LENGHT );

    log_printf( &logger, "    Set address and PAN ID  \r\n" );
    bee_set_long_address( &bee, &long_address1 );
    bee_set_short_address( &bee, &short_address1 );
    bee_set_pan_id( &bee, &pan_id1 );
#else
    log_printf( &logger, " Application Mode: Receiver\r\n" );
    log_printf( &logger, "    Set address and PAN ID  \r\n" );
    bee_set_long_address( &bee, &long_address2 );
    bee_set_short_address( &bee, &short_address2 );
    bee_set_pan_id( &bee, &pan_id2 );
#endif
    log_printf( &logger, "    Init ZigBee module:    \r\n" );
    log_printf( &logger, " - Set nonbeacon-enabled \r\n" );
    bee_nonbeacon_init( &bee );

    log_printf( &logger, " - Set as PAN coordinator\r\n" );
    bee_nonbeacon_pan_coordinator_device( &bee );

    log_printf( &logger, " - Set max TX power\r\n" );
    bee_set_tx_power( &bee, 31 );

    log_printf( &logger, " - All frames 3, data frame\r\n" );
    bee_set_frame_format_filter( &bee, 1 );

    log_printf( &logger, " - Set normal mode\r\n"  );
    bee_set_reception_mode( &bee, 1 );

    log_printf( &logger, " - Device Wake Up\r\n"  );
    bee_hw_wake_up( &bee );
    bee_read_byte_short( &bee, BEE_INTSTAT ); // clears status register

    Delay_1sec( );
}

Application Task

Depending on the selected application mode, it reads all the received data or sends the desired message every 3 seconds.


void application_task ( void )
{
#ifdef DEMO_APP_TRANSMITTER
    // Transmitter mode
    memcpy( &tx_data_fifo[ 13 ], &data_tx1[ 0 ], BEE_DATA_LENGHT);
    bee_write_tx_normal_fifo( &bee, 0, &tx_data_fifo[ 0 ] );
    log_printf( &logger, " - Sent data :   " );
    log_printf( &logger, "%.6s \r\n", data_tx1 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    memcpy( &tx_data_fifo[ 13 ], &data_tx2[ 0 ], BEE_DATA_LENGHT );
    bee_write_tx_normal_fifo( &bee, 0, &tx_data_fifo[ 0 ] );
    log_printf( &logger, " - Sent data :   " );
    log_printf( &logger, "%.6s \r\n", data_tx2 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#else
    // Receiver mode
    bee_read_rx_fifo( &bee, &rx_data_fifo[ 0 ] );

    if ( memcmp( &rx_data_fifo_old[ 0 ], &rx_data_fifo[ 0 ], BEE_DATA_LENGHT ) )
    {
        memcpy( &rx_data_fifo_old [ 0 ], &rx_data_fifo[ 0 ], BEE_DATA_LENGHT );
        log_printf( &logger, " - Received data :   " );
        log_printf( &logger, "%.6s \r\n", rx_data_fifo );
        Delay_ms ( 1000 );
        Delay_ms ( 500 );
    }
    Delay_ms ( 500 );
#endif
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Bee

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

3D Hall 6 click

5

3D Hall 6 Click is a very accurate, magnetic field sensing Click board, used to measure the intensity of the magnetic field across three perpendicular axes. It is equipped with the MLX90380, a monolithic contactless sensor IC sensitive to the flux density applied orthogonally and parallel to the IC surface, from Melexis.

[Learn More]

Thermo K 3 click

0

Thermo K 3 Click is a compact add-on board that provides accurate temperature measurements with a thermocouple probe. This board features the MAX6675, a cold-junction-compensated K-thermocouple-to-digital converter from Analog Devices. With the versatile type-K probe, this board enables precise temperature measurements of up to +700°C in 12-bit (0.25°C) resolution. This board can measure temperatures as high as +1024°C but with less precision. It features cold-junction compensation sensing and correction and open thermocouple detection.

[Learn More]

PS/2 click

5

Simple demonstration of using PS/2 communication protocol. Example detects keyboard press and writes the corresponding key on UART.

[Learn More]