We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.19
mikroSDK Library: 2.0.0.0
Category: Gas
Downloaded: 218 times
Not followed.
License: MIT license
Air quality 2 Click carries the iAQ-Core Indoor Air Quality sensor that measures VOC levels and provides CO2 equivalent and TVOC equivalent predictions.
Do you want to subscribe in order to receive notifications regarding "Air quality 2 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Air quality 2 Click" changes.
Do you want to report abuse regarding "Air quality 2 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4128_air_quality_2_cl.zip [467.26KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Air quality 2 Click carries the iAQ-Core Indoor Air Quality sensor that measures VOC levels and provides CO2 equivalent and TVOC equivalent predictions.
We provide a library for the Airquality2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for Airquality2 Click driver.
Config Object Initialization function.
void airquality2_cfg_setup ( airquality2_cfg_t *cfg );
Initialization function.
AIRQUALITY2_RETVAL airquality2_init ( airquality2_t ctx, airquality2_cfg_t cfg );
This function reads data.
void airquality2_generic_read ( airquality2_t ctx, uint8_t data_buf, uint8_t len );
Reads all data information about the indoor air quality.
uint8_t airquality2_get_all_data ( airquality2_t ctx, uint16_t value_co2, uint16_t value_tvoc, int32_t resistance );
This app measure indoor air quality.
The demo application is composed of two sections :
Initialization device.
void application_init ( void )
{
log_cfg_t log_cfg;
airquality2_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
airquality2_cfg_setup( &cfg );
AIRQUALITY2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
airquality2_init( &airquality2, &cfg );
// Click calibration
uint8_t dummy_buffer[ 9 ];
airquality2_generic_read( &airquality2, dummy_buffer, AIRQUALITY2_READ_ALL );
log_printf( &logger, "----------------------------------\r\n" );
log_printf( &logger, " Air quality 2 \r\n" );
log_printf( &logger, "----------------------------------\r\n" );
Delay_ms ( 100 );
}
This is a example which demonstrates the use of Air quality 2 Click board. Read all data information about the indoor air quality from register on the iAQ-Core module, display Prediction Value CO2 [ ppm ], Prediction Value TVOC [ ppb ] and Resistance Value. Results are being sent to the Usart Terminal where you can track their changes. All data logs on usb uart for aproximetly every 5 sec.
void application_task ( void )
{
uint8_t status_info;
uint16_t value_co2;
uint16_t value_tvoc;
int32_t resistance;
status_info = airquality2_get_all_data( &airquality2, &value_co2, &value_tvoc, &resistance );
Delay_100ms( );
if ( status_info == AIRQUALITY2_STATUS_OK )
{
log_printf( &logger, " | Status : OK |\r\n" );
}
if ( status_info == AIRQUALITY2_STATUS_BUSY )
{
log_printf( &logger, " | Status : BUSY |\r\n" );
}
if ( status_info == AIRQUALITY2_STATUS_ERROR )
{
log_printf( &logger, " | Status : ERROR |\r\n" );
}
if ( status_info == AIRQUALITY2_STATUS_RUNIN )
{
log_printf( &logger, " | Status : RUNIN |\r\n" );
}
log_printf( &logger, "----------------------------------\r\n" );
log_printf( &logger, " CO2 : %u [ ppm ] \r\n", value_co2 );
log_printf( &logger, " TVOC : %u [ ppb ] \r\n", value_tvoc );
log_printf( &logger, " Resistance : %ld [ Ohm ] \r\n", resistance );
log_printf( &logger, "----------------------------------\r\n" );
Delay_1sec( );
Delay_1sec( );
Delay_1sec( );
Delay_1sec( );
Delay_1sec( );
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.