TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141959 times)
  2. FAT32 Library (75148 times)
  3. Network Ethernet Library (59420 times)
  4. USB Device Library (49412 times)
  5. Network WiFi Library (45228 times)
  6. FT800 Library (44814 times)
  7. GSM click (31379 times)
  8. mikroSDK (30365 times)
  9. microSD click (27741 times)
  10. PID Library (27595 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Air quality 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: Gas

Downloaded: 452 times

Not followed.

License: MIT license  

Air quality 2 Click carries the iAQ-Core Indoor Air Quality sensor that measures VOC levels and provides CO2 equivalent and TVOC equivalent predictions.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Air quality 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Air quality 2 Click" changes.

Do you want to report abuse regarding "Air quality 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Air quality 2 Click

Air quality 2 Click carries the iAQ-Core Indoor Air Quality sensor that measures VOC levels and provides CO2 equivalent and TVOC equivalent predictions.

airquality2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Airquality2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Airquality2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void airquality2_cfg_setup ( airquality2_cfg_t *cfg );

  • Initialization function.

    AIRQUALITY2_RETVAL airquality2_init ( airquality2_t ctx, airquality2_cfg_t cfg );

Example key functions :

  • This function reads data.

    void airquality2_generic_read ( airquality2_t ctx, uint8_t data_buf, uint8_t len );

  • Reads all data information about the indoor air quality.

    uint8_t airquality2_get_all_data ( airquality2_t ctx, uint16_t value_co2, uint16_t value_tvoc, int32_t resistance );

Examples Description

This app measure indoor air quality.

The demo application is composed of two sections :

Application Init

Initialization device.


void application_init ( void )
{
    log_cfg_t log_cfg;
    airquality2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    airquality2_cfg_setup( &cfg );
    AIRQUALITY2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    airquality2_init( &airquality2, &cfg );

    // Click calibration 
    uint8_t dummy_buffer[ 9 ];
    airquality2_generic_read( &airquality2, dummy_buffer, AIRQUALITY2_READ_ALL );

    log_printf( &logger, "----------------------------------\r\n" );
    log_printf( &logger, "           Air quality 2          \r\n" );
    log_printf( &logger, "----------------------------------\r\n" );
    Delay_ms ( 100 );
}

Application Task

This is a example which demonstrates the use of Air quality 2 Click board. Read all data information about the indoor air quality from register on the iAQ-Core module, display Prediction Value CO2 [ ppm ], Prediction Value TVOC [ ppb ] and Resistance Value. Results are being sent to the Usart Terminal where you can track their changes. All data logs on usb uart for aproximetly every 5 sec.


void application_task ( void )
{
    uint8_t status_info;
    uint16_t value_co2;
    uint16_t value_tvoc;
    int32_t resistance;

    status_info = airquality2_get_all_data( &airquality2, &value_co2, &value_tvoc, &resistance );
    Delay_100ms( );

    if ( status_info == AIRQUALITY2_STATUS_OK )
    {
        log_printf( &logger, "       | Status : OK     |\r\n" );
    }
    if ( status_info == AIRQUALITY2_STATUS_BUSY )
    {
        log_printf( &logger, "       | Status : BUSY   |\r\n" );
    }
    if ( status_info == AIRQUALITY2_STATUS_ERROR )
    {
        log_printf( &logger, "       | Status : ERROR  |\r\n" );
    }
    if ( status_info == AIRQUALITY2_STATUS_RUNIN )
    {
        log_printf( &logger, "       | Status : RUNIN  |\r\n" );
    }

    log_printf( &logger, "----------------------------------\r\n" );

    log_printf( &logger, " CO2        : %u [ ppm ] \r\n", value_co2 );

    log_printf( &logger, " TVOC       : %u [ ppb ] \r\n", value_tvoc );

    log_printf( &logger, " Resistance : %ld [ Ohm ] \r\n", resistance );

    log_printf( &logger, "----------------------------------\r\n" );

    Delay_1sec( );
    Delay_1sec( );
    Delay_1sec( );
    Delay_1sec( );
    Delay_1sec( );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Airquality2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

AMR Current click

5

The AMR Current Click is a Click board which features the MCR1101-20-5, an AMR based integrated current sensor from ACEINNA.

[Learn More]

TempHum 23 Click

0

Temp&Hum 23 Click is a compact add-on board representing temperature and humidity sensing solution. This board features the SHT45, a 4th generation ultra-low-power relative humidity and temperature sensor from Sensirion. The SHT45 is characterized by its high accuracy (±1% RH and ±0.1°C over a wide operating temperature range) and high resolution providing 16-bit data to the host controller with a configurable I2C interface. Also, it is designed for reliable operation in harsh conditions such as condensing environments. This Click board™ is perfectly suitable for high-volume applications.

[Learn More]

Temp Alarm Click

0

Temp Alarm Click is a compact add-on board that adds temperature alarm functionalities to your project. This board features the PTMP4718, a high-accuracy remote and local temperature sensor from Texas Instruments. This temperature sensor has pin-programmable alert thresholds, with a fault queue for debounce.

[Learn More]