We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.8
mikroSDK Library: 2.0.0.0
Category: RTC
Downloaded: 98 times
Not followed.
License: MIT license
RTC 21 Click is a compact add-on board that accurately keeps the time of the day. This board features the PT7C4311, an I2C-configurable real-time clock module with programmable square-wave output from Diodes Incorporated. The PT7C4311 includes time and calendar functions providing various information such as hour, minute, second, day, date, month, year, and century. It operates in a 24-hour format indicator, has automatic leap year compensation, and low power consumption, allowing it to be used with a single button cell battery for an extended period.
Do you want to subscribe in order to receive notifications regarding "RTC 21 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "RTC 21 Click" changes.
Do you want to report abuse regarding "RTC 21 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
5180_rtc_21_click.zip [498.96KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
RTC 21 Click is a compact add-on board that accurately keeps the time of the day. This board features the PT7C4311, an I2C-configurable real-time clock module with programmable square-wave output from Diodes Incorporated. The PT7C4311 includes time and calendar functions providing various information such as hour, minute, second, day, date, month, year, and century. It operates in a 24-hour format indicator, has automatic leap year compensation, and low power consumption, allowing it to be used with a single button cell battery for an extended period.
We provide a library for the RTC 21 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for RTC 21 Click driver.
rtc21_cfg_setup
Config Object Initialization function.
void rtc21_cfg_setup ( rtc21_cfg_t *cfg );
rtc21_init
Initialization function.
err_t rtc21_init ( rtc21_t *ctx, rtc21_cfg_t *cfg );
rtc21_set_time
This function sets the starting time values - second, minute and hour.
err_t rtc21_set_time ( rtc21_t *ctx, rtc21_time_t *time );
rtc21_set_date
This function sets the starting date values - day of week, day, month and year.
err_t rtc21_set_date ( rtc21_t *ctx, rtc21_date_t *date );
rtc21_read_time
This function reads the current time values - second, minute and hour.
err_t rtc21_read_time ( rtc21_t *ctx, rtc21_time_t *time );
This example demonstrates the use of RTC 21 Click board by reading and displaying the time and date values.
The demo application is composed of two sections :
Initializes the driver and logger and then sets the starting time and date.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
rtc21_cfg_t rtc21_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
rtc21_cfg_setup( &rtc21_cfg );
RTC21_MAP_MIKROBUS( rtc21_cfg, MIKROBUS_1 );
if ( I2C_MASTER_ERROR == rtc21_init( &rtc21, &rtc21_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
time.hour = 23;
time.minute = 59;
time.second = 50;
if ( RTC21_OK == rtc21_set_time ( &rtc21, &time ) )
{
log_printf( &logger, " Set time: %.2u:%.2u:%.2u\r\n",
( uint16_t ) time.hour, ( uint16_t ) time.minute, ( uint16_t ) time.second );
}
date.day_of_week = RTC21_SATURDAY;
date.day = 31;
date.month = 12;
date.year = 22;
if ( RTC21_OK == rtc21_set_date ( &rtc21, &date ) )
{
log_printf( &logger, " Set date: %s, %.2u.%.2u.20%.2u.\r\n",
rtc21_get_day_of_week_name ( date.day_of_week ),
( uint16_t ) date.day, ( uint16_t ) date.month, ( uint16_t ) date.year );
}
Delay_ms ( 100 );
log_info( &logger, " Application Task " );
}
Reads and displays on the USB UART the current time and date values once per second.
void application_task ( void )
{
if ( RTC21_OK == rtc21_read_time ( &rtc21, &time ) )
{
log_printf( &logger, " Time: %.2u:%.2u:%.2u\r\n",
( uint16_t ) time.hour, ( uint16_t ) time.minute, ( uint16_t ) time.second );
}
if ( RTC21_OK == rtc21_read_date ( &rtc21, &date ) )
{
log_printf( &logger, " Date: %s, %.2u.%.2u.20%.2u.\r\n",
rtc21_get_day_of_week_name ( date.day_of_week ),
( uint16_t ) date.day, ( uint16_t ) date.month, ( uint16_t ) date.year );
}
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.