TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139251 times)
  2. FAT32 Library (71748 times)
  3. Network Ethernet Library (57120 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28077 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 191 times

Not followed.

License: MIT license  

Brushless 2 Click carries the DRV10964 BLDC motor controller with an integrated output stage.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 2 Click" changes.

Do you want to report abuse regarding "Brushless 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Brushless 2 Click

Brushless 2 Click carries the DRV10964 BLDC motor controller with an integrated output stage.

brushless2_click.png

Click Product page


Click library

  • Author : Nikola peric
  • Date : Mar 2022.
  • Type : PWM type

Software Support

We provide a library for the Brushless2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Brushless2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void brushless2_cfg_setup ( brushless2_cfg_t *cfg );

  • Initialization function.

    BRUSHLESS2_RETVAL brushless2_init ( brushless2_t ctx, brushless2_cfg_t cfg );

Example key functions :

  • Set the direction of rotation in the counterclockwise direction function

    void brushless2_counter_clockwise ( brushless2_t *ctx );

  • Set the direction of rotation in the clockwise direction function

    void brushless2_clockwise ( brushless2_t *ctx );

  • Get Interrupt pin state function

    uint8_t brushless2_get_interrupt_status ( brushless2_t *ctx );

Examples Description

This application controlled speed motor.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - GPIO, PWM initialization


void application_init ( void )
{
    log_cfg_t log_cfg;
    brushless2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    brushless2_cfg_setup( &cfg );
    BRUSHLESS2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    brushless2_init( &brushless2, &cfg );

    log_printf( &logger, "---------------------- \r\n" );

    brushless2_set_duty_cycle ( &brushless2, 0.0 );
    brushless2_pwm_start ( &brushless2 );
    Delay_ms ( 500 );
    log_info( &logger, "---- Application Task ----" );
}

Application Task

This is a example which demonstrates the use of Brushless 2 Click board. Brushless 2 Click communicates with register via PWM interface. Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void )
{    
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    brushless2_set_duty_cycle ( &brushless2, duty );
    brushless2_clockwise ( &brushless2 );
    log_printf( &logger, "> Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );

    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Magic RFID Click

5

Magic RFID Click is a compact add-on board that contains an embedded RFID module. This board features the M6E-NANO, UHF RFID module with ultra-low power consumption from JADAK.

[Learn More]

ISO 9141 Click

0

ISO 9141 Click is a compact add-on board that contains a monolithic bus driver with ISO 9141 interface. This board features the L9637, a monolithic integrated circuit containing standard ISO 9141 compatible interface functions from ST Microelectronics.

[Learn More]

UT-M 7-SEG R Click

0

UT-M 7-SEG R Click carries two SMD ultra thin LED 7-SEG displays and the MAX6969 constant-current LED driver from Maxim Integrated. The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over SPI interface.

[Learn More]