TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (402 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (129 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140767 times)
  2. FAT32 Library (73351 times)
  3. Network Ethernet Library (58197 times)
  4. USB Device Library (48380 times)
  5. Network WiFi Library (43975 times)
  6. FT800 Library (43537 times)
  7. GSM click (30466 times)
  8. mikroSDK (29170 times)
  9. PID Library (27166 times)
  10. microSD click (26847 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

GNSS 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: GPS/GNSS

Downloaded: 359 times

Not followed.

License: MIT license  

Determine your current position with GNSS 7 Click. It carries the NEO-M9N GNSS receiver module from u-blox.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "GNSS 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "GNSS 7 Click" changes.

Do you want to report abuse regarding "GNSS 7 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


GNSS 7 Click

Determine your current position with GNSS 7 Click. It carries the NEO-M9N GNSS receiver module from u-blox.

gnss7_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jul 2022.
  • Type : UART type

Software Support

We provide a library for the GNSS 7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for GNSS 7 Click driver.

Standard key functions :

  • gnss7_cfg_setup Config Object Initialization function.

    void gnss7_cfg_setup ( gnss7_cfg_t *cfg );
  • gnss7_init Initialization function.

    err_t gnss7_init ( gnss7_t *ctx, gnss7_cfg_t *cfg );

Example key functions :

  • gnss7_generic_read This function reads a desired number of data bytes by using UART serial interface.

    err_t gnss7_generic_read ( gnss7_t *ctx, char *data_out, uint16_t len );
  • gnss7_clear_ring_buffers This function clears UART tx and rx ring buffers.

    void gnss7_clear_ring_buffers ( gnss7_t *ctx );
  • gnss7_parse_gngga This function parses the GNGGA data from the read response buffer.

    err_t gnss7_parse_gngga ( char *rsp_buf, uint8_t gngga_element, char *element_data );

Example Description

This example demonstrates the use of GNSS 7 Click by reading and displaying the GPS coordinates.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    gnss7_cfg_t gnss7_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    gnss7_cfg_setup( &gnss7_cfg );
    GNSS7_MAP_MIKROBUS( gnss7_cfg, MIKROBUS_1 );
    if ( UART_ERROR == gnss7_init( &gnss7, &gnss7_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    log_info( &logger, " Application Task " );
}

Application Task

Reads the received data, parses the GNGGA info from it, and once it receives the position fix it will start displaying the coordinates on the USB UART.

void application_task ( void )
{
    if ( GNSS7_OK == gnss7_process( &gnss7 ) )
    {
        if ( PROCESS_BUFFER_SIZE == app_buf_len )
        {
            gnss7_parser_application( &gnss7, app_buf );
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.GNSS7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Pressure 16 Click

0

Pressure 16 Click is a compact add-on board that contains a board-mount pressure sensor. This board features the WSEN-PADS (2511020213301), a high-precision MEMS-based digital absolute pressure sensor from Würth Elektronik. It has a fully-calibrated 24-bit pressure output to provide accurate atmospheric pressure data with a configurable host interface that supports both I2C and SPI serial communication and with an intelligent on-chip motion-triggered interrupt feature.

[Learn More]

RTC 18 Click

0

RTC 18 Click is a compact add-on board that accurately keeps the time of a day. This board features the RV-3032-C7, an I2C-configurable real-time clock module that incorporates an integrated CMOS circuit and an XTAL from Micro Crystal AG. The RV-3032-C7 is a temperature compensated RTC with premium accuracy (0.22 sec/day) and extremely low power consumption, allowing it to be used with a single button cell battery for an extended period. It can measure temperature with a typical accuracy of ±1°C and a resolution of 0.0625°C/step with a programmable alarm on top and bottom temperature limits. It features standard RTC functions with automatic leap year correction, and standard interrupt for Periodic Countdown Timer and Periodic Time Update (seconds, minutes), date/hour/minute alarm, and an external event.

[Learn More]

Smart DOF click

5

SmartDOF click features a highly advanced integrated system-in-package (SiP) solution with three different sensors on-chip: triaxial accelerometer, magnetometer, and triaxial gyroscope are all integrated on a same die, along with the powerful 32-bit ARM® Cortex®-M0+ MCU.

[Learn More]