TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139847 times)
  2. FAT32 Library (72210 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29981 times)
  8. mikroSDK (28442 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

GNSS3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: GPS/GNSS

Downloaded: 206 times

Not followed.

License: MIT license  

GNSS3 Click carries SIMCom’s SIM33ELA standalone GNSS module with an integrated antenna (and a connector for an external one).

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "GNSS3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "GNSS3 Click" changes.

Do you want to report abuse regarding "GNSS3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


GNSS3 Click

GNSS3 Click carries SIMCom’s SIM33ELA standalone GNSS module with an integrated antenna (and a connector for an external one).

gnss3_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : apr 2020.
  • Type : UART GPS/GNSS type

Software Support

We provide a library for the Gnss3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Gnss3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void gnss3_cfg_setup ( gnss3_cfg_t *cfg );

  • Initialization function.

    err_t gnss3_init ( gnss3_t ctx, gnss3_cfg_t cfg );

Example key functions :

  • GNSS 3 parse GNGGA function.

    err_t gnss3_parse_gngga ( char rsp_buf, uint8_t gngga_element, char element_data );

  • Generic read function.

    int32_t gnss3_generic_read ( gnss3_t ctx, char data_buf, uint16_t max_len );

  • Wake-up module.

    void gnss3_module_wakeup ( gnss3_t *ctx );

Examples Description

This example demonstrates the use of GNSS 3 Click by reading and displaying the GPS coordinates.

The demo application is composed of two sections :

Application Init

Initializes the driver and resets the Click board.


void application_init ( void )
{
    log_cfg_t log_cfg;
    gnss3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    gnss3_cfg_setup( &cfg );
    GNSS3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    gnss3_init( &gnss3, &cfg );

    gnss3_module_wakeup( &gnss3 );
    Delay_ms ( 1000 );
}

Application Task

Reads the received data, parses the GNGGA info from it, and once it receives the position fix it will start displaying the coordinates on the USB UART.


void application_task ( void )
{
    gnss3_process( &gnss3 );
    if ( app_buf_len > ( sizeof ( ( char * ) GNSS3_RSP_GNGGA ) + GNSS3_GNGGA_ELEMENT_SIZE ) ) 
    {
        gnss3_parser_application( app_buf );
    }
} 

Note

The default baud rate for communication UART is set to 9600. If you receive a Click board on which the default baud rate for UART is set differently, you will need to change the setting in the gnss13_setup_cfg function.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Gnss3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Mosaic Click

0

Mosaic Click is a compact add-on board for precision navigation and location-based applications. This board features the Mosaic-X5, a compact global navigation satellite system (GNSS) receiver from Septentrio. The Mosaic-X5 stands out for its multi-band and multi-constellation tracking ability, ensuring robust and comprehensive global coverage. It features Septentrio's AIM+ technology for superior interference mitigation, enabling it to counteract a wide range of signal disruptions.

[Learn More]

3D Hall 8 Click

0

3D Hall 8 Click is a compact add-on board containing an ultra-small 3D-magnetic sensor for industrial and consumer applications.

[Learn More]

Current Limit click

5

Current Limit Click is a compact add-on board that contains a low-voltage, P-channel MOSFET power switch intended for high-side load switching applications. This board features the MAX890L, a low-resistance power switch with the adjustable, accurate current limit system, and thermal shutdown from Maxim Integrated.

[Learn More]