TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139251 times)
  2. FAT32 Library (71748 times)
  3. Network Ethernet Library (57120 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28077 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 8 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 270 times

Not followed.

License: MIT license  

Brushless 8 Click is a compact add-on board suitable for controlling BLDC motors with any MCU. This board features the TC78B042FTG, a sine-wave PWM drive three-phase full-wave brushless motor controller from Toshiba Semiconductor.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 8 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 8 Click" changes.

Do you want to report abuse regarding "Brushless 8 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Brushless 8 Click

Brushless 8 Click is a compact add-on board suitable for controlling BLDC motors with any MCU. This board features the TC78B042FTG, a sine-wave PWM drive three-phase full-wave brushless motor controller from Toshiba Semiconductor.

brushless8_click.png

Click Product page


Click library

  • Author : Nikola Peric
  • Date : Mar 2022.
  • Type : PWM type

Software Support

We provide a library for the Brushless8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Library Description

This library contains API for Brushless8 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void brushless8_cfg_setup ( brushless8_cfg_t *cfg );

  • Initialization function.

    BRUSHLESS8_RETVAL brushless8_init ( brushless8_t ctx, brushless8_cfg_t cfg );

  • Click Default Configuration function.

    void brushless8_default_cfg ( brushless8_t *ctx );

Example key functions :

  • brushless8_cfg_setup function initializes Click configuration structure to initial values.

    brushless8_cfg_setup( &brushless8_cfg );
  • brushless8_init function initializes all necessary pins and peripherals used for this Click board.

    BRUSHLESS8_RETVAL init_flag = brushless8_init( &brushless8, &brushless8_cfg );
  • brushless8_default_cfg function executes a default configuration of Brushless 8 Click board.

    brushless8_default_cfg ( &brushless8 );

Examples Description

This example showcases how to initialize and use the Brushless 8 Click. This application is a schowcase of controlling speed and direction of brushless motor with hall sesnor.

The demo application is composed of two sections :

Application Init

Initializes the Click board to appropriate settings based on selected mode. Initialization settings are sent through I2C bus and the motor itself is controlled via PWM or DAC over I2C.

  • Modes:
    • BRUSHLESS8_PWM
    • BRUSHLESS8_DAC

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    brushless8_cfg_t brushless8_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "Application Init" );

    // Click initialization.

    brushless8_cfg_setup( &brushless8_cfg );
    // Select desired mode.
    brushless8_cfg.ctrl_mod = BRUSHLESS8_MODE;
    BRUSHLESS8_MAP_MIKROBUS( brushless8_cfg, MIKROBUS_1 );

    BRUSHLESS8_RETVAL init_flag = brushless8_init( &brushless8, &brushless8_cfg );
    if ( BRUSHLESS8_OK != init_flag )
    {
        log_error( &logger, "Application Init Error" );
        log_info( &logger, "Please, run program again..." );

        for ( ; ; );
    }

    brushless8_default_cfg ( &brushless8 );

    if ( BRUSHLESS8_PWM == brushless8.ctrl_mod )
    {
        brushless8_set_dac_vout( &brushless8, BRUSHLESS8_DAC_REG_CHN_A_DVSP, 0 );
        brushless8_set_duty_cycle( &brushless8, 0 );
        brushless8_pwm_start( &brushless8 );

        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }

    log_info( &logger, "Application Task" );
    log_printf( &logger, "------------------------------\r\n" );
}

Application Task

This example demonstrates the use of Brushless 8 Click board. Brushless 8 Click communicates with the device via I2C driver in order to set adequate voltage level for connected motor. Current PWM/DAC settings being output are sent via logger. Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void )
{    
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    brushless8_set_duty_cycle ( &brushless8, duty );
    log_printf( &logger, "> Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );

    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;
}

Note

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless8

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

MIC24045 click

6

MIC24045 click carries MIC24045 I2C-programmable, high-efficiency, wide input range, 5A synchronous step-down regulator from Microchip. The click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over I2C interface.

[Learn More]

Touchpad click

2

Touchpad click is a capacitive touch input device driven by Microchip’s low-powered MTCH6102 controller. The touchpad surface is covered with a sheet of black plastic to demonstrate the chip’s support for cover layers. Touchpad click communicates with the target MCU through the mikroBUS I2C interface. Designed to use a 3.3V power supply.

[Learn More]

ccRF Click

1

ccRF Click is a low-power 2.4 GHz transceiver designed for the 2400- 2483.5 MHz ISM and SRD frequency bands. It features CC2500 Low-Power 2.4 GHz RF transceiver as well as PCB trace antenna. The CC2500 is integrated with a highly configurable baseband modem that supports various modulation formats and has data rate up to 500 kBaud.

[Learn More]