TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139563 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57255 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42563 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26930 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

EEPROM 12 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: EEPROM

Downloaded: 113 times

Not followed.

License: MIT license  

EEPROM 12 Click is a compact add-on board that contains a highly reliable, nonvolatile memory solution. This board features the M24256E, an EEPROM from STMicroelectronics. It is a 256Kbit (32KB) EEPROM with a page size of 64 bytes and an additional identification page with the same size. This identification page can be read or written and (later) permanently locked in read-only mode and can be used to store sensitive application parameters.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "EEPROM 12 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "EEPROM 12 Click" changes.

Do you want to report abuse regarding "EEPROM 12 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


EEPROM 12 Click

EEPROM 12 Click is a compact add-on board that contains a highly reliable, nonvolatile memory solution. This board features the M24256E, an EEPROM from STMicroelectronics. It is a 256Kbit (32KB) EEPROM with a page size of 64 bytes and an additional identification page with the same size. This identification page can be read or written and (later) permanently locked in read-only mode and can be used to store sensitive application parameters.

eeprom12_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Sep 2023.
  • Type : I2C type

Software Support

We provide a library for the EEPROM 12 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for EEPROM 12 Click driver.

Standard key functions :

  • eeprom12_cfg_setup Config Object Initialization function.

    void eeprom12_cfg_setup ( eeprom12_cfg_t *cfg );
  • eeprom12_init Initialization function.

    err_t eeprom12_init ( eeprom12_t *ctx, eeprom12_cfg_t *cfg );

Example key functions :

  • eeprom12_memory_write EEPROM 12 memory write function.

    err_t eeprom12_memory_write ( eeprom12_t *ctx, uint16_t mem_addr, uint8_t *data_in, uint8_t len );
  • eeprom12_memory_read EEPROM 12 memory read function.

    err_t eeprom12_memory_read ( eeprom12_t *ctx, uint16_t mem_addr, uint8_t *data_out, uint8_t len );

Example Description

This example demonstrates the use of EEPROM 12 Click board™. The demo app writes specified data to the memory and reads it back.

The demo application is composed of two sections :

Application Init

The initialization of I2C module, log UART, and additional pins.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    eeprom12_cfg_t eeprom12_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    eeprom12_cfg_setup( &eeprom12_cfg );
    EEPROM12_MAP_MIKROBUS( eeprom12_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == eeprom12_init( &eeprom12, &eeprom12_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    Delay_ms ( 100 );

    log_info( &logger, " Application Task " );
    Delay_ms ( 100 );
}

Application Task

The demo application writes a desired number of bytes to the memory and then verifies if it is written correctly by reading from the same memory location and displaying the memory content. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void ) 
{
    uint8_t data_buf[ 128 ] = { 0 };
    memcpy( data_buf, DEMO_TEXT_MESSAGE_1, strlen( DEMO_TEXT_MESSAGE_1 ) );
    if ( EEPROM12_OK == eeprom12_memory_write( &eeprom12, STARTING_ADDRESS, 
                                                          data_buf, 
                                                          strlen( DEMO_TEXT_MESSAGE_1 ) ) )
    {
        log_printf( &logger, " Write data: %s\r\n", data_buf );
        Delay_ms ( 100 );
    }

    memset( data_buf, 0, sizeof( data_buf ) );
    Delay_ms ( 100 );
    if ( EEPROM12_OK == eeprom12_memory_read( &eeprom12, STARTING_ADDRESS, 
                                                         data_buf, 
                                                         strlen( DEMO_TEXT_MESSAGE_1 ) ) )
    {
        Delay_ms ( 100 );
        log_printf( &logger, " Read data: %s\r\n\n", data_buf );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }

    memcpy( data_buf, DEMO_TEXT_MESSAGE_2, strlen( DEMO_TEXT_MESSAGE_2 ) );
    if ( EEPROM12_OK == eeprom12_memory_write( &eeprom12, STARTING_ADDRESS, 
                                                          data_buf, 
                                                          strlen( DEMO_TEXT_MESSAGE_2 ) ) )
    {
        log_printf( &logger, " Write data: %s\r\n", data_buf );
        Delay_ms ( 100 );
    }

    memset( data_buf, 0, sizeof( data_buf ) );
    Delay_ms ( 100 );
    if ( EEPROM12_OK == eeprom12_memory_read( &eeprom12, STARTING_ADDRESS, 
                                                         data_buf, 
                                                         strlen( DEMO_TEXT_MESSAGE_2 ) ) )
    {
        Delay_ms ( 100 );
        log_printf( &logger, " Read data: %s\r\n\n", data_buf );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.EEPROM12

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Load Cell 2 click

5

Load cell 2 Click is a weight measurement click which utilizes a load cell element, in order to precisely measure the weight of an object. The Load Cell 2 Click can be used with the strain gauge type of load cells with external differential reference voltage range from 0.1V to 5V.

[Learn More]

PMIC Click

0

PMIC Click is a compact add-on board for efficient power management in rechargeable applications. This board features the nPM1300, an advanced Power Management Integrated Circuit (PMIC) from Nordic Semiconductor, offering integrated battery charging and advanced system power management features. The board includes an 800mA JEITA-compliant linear battery charger, two 200mA buck regulators, and configurable load switches, all housed in a compact QFN32 package.

[Learn More]

Expand 9 Click

0

Expand 9 Click is a compact add-on board that contains a multi-port I/O expander. This board features the SX1509QB, the world’s lowest voltage level shifting GPIO expander from Semtech Corporation. The SX1509QB comes in a 16-channel configuration and allows easy serial expansion of I/O through a standard I2C serial interface. It also has a built-in level shifting feature making it highly flexible in power supply systems where communication between incompatible I/O voltages is required, an integrated LED driver for enhanced lighting, and a keypad scanning engine to implement keypad applications up to 8x8 matrix.

[Learn More]