TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139563 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57254 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42556 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26930 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Fan Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 226 times

Not followed.

License: MIT license  

Fan Click carries an EMC2301 controller for powering and regulating the operation of 5V four-wire fans, which are commonly utilized as coolers in computers and other electronics.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Fan Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Fan Click" changes.

Do you want to report abuse regarding "Fan Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Fan Click

Fan Click carries an EMC2301 controller for powering and regulating the operation of 5V four-wire fans, which are commonly utilized as coolers in computers and other electronics.

fan_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : jan 2020.
  • Type : I2C type

Software Support

We provide a library for the Fan Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Fan Click driver.

Standard key functions :

  • Config Object Initialization function.

    void fan_cfg_setup ( fan_cfg_t *cfg );

  • Initialization function.

    FAN_RETVAL fan_init ( fan_t ctx, fan_cfg_t cfg );

Example key functions :

  • Generic write function.

    void fan_generic_write ( fan_t ctx, uint8_t reg, uint8_t data_buf, uint8_t len );

  • Generic read function.

    void fan_generic_read ( fan_t ctx, uint8_t reg, uint8_t data_buf, uint8_t len );

  • Fan Click lock registers.

    void fan_lock_registers ( fan_t *ctx, uint8_t lock );

Examples Description

This application is controller for powering and regulating.

The demo application is composed of two sections :

Application Init

Initialization driver init and init chip.


void application_init ( void )
{
    log_cfg_t log_cfg;
    fan_cfg_t fan_cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    fan_cfg_setup( &fan_cfg );
    FAN_MAP_MIKROBUS( fan_cfg, MIKROBUS_1 );
    if ( fan_init( &fan, &fan_cfg ) == I2C_MASTER_ERROR )
    {
        log_info( &logger, "---- Application Init Error ----" );
        log_info( &logger, "---- Please, run program again ----" );

        for ( ; ; );
    }
    log_info( &logger, "---- Application Init Done ----" );
    fan_default_cfg( &fan );
    fan_pwm_base( &fan, FAN_PWM_BASE_FREQ_HALF_SCALE );
    log_info( &logger, "---- Application Program Running... ----\n" );
}

Application Task

Performs a control of the fan and reads rotation per minute (RPM). Results will be sent to the usb uart terminal.


void application_task ( void )
{
    for ( uint8_t duty = FAN_DUTY_RATIO_0_PER; duty <= FAN_DUTY_RATIO_100_PER;
          duty += FAN_DUTY_RATIO_10_PER )
    {
        fan_setting( &fan, duty );
        log_printf( &logger, " Duty Ratio : %u%%\r\n", (uint16_t)duty );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );

        uint16_t tacho = 0;

        fan_get_tach( &fan, &tacho );
        log_printf( &logger, " Rotation per minute : %urpm\r\n\n", tacho );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Fan

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Pedometer 3 Click

0

Pedometer 3 Click is a three-axis acceleration sensing Click board which utilizes the KX126-1063.

[Learn More]

BarGraph Click

0

BarGraph Click is a 10-segment bar graph display Click, which uses a high-quality bar graph LED display. The bar graph display is a very popular device for displaying various properties, whether it be an audio level, current/voltage level, the position of the encoder, or any other property that can be displayed in a form of a bar graph.

[Learn More]

Brushless 10 Click

0

Brushless 10 Click is a compact add-on board that provides precise control over brushless DC motors. This board features the TC78B016FTG, a 3-phase sine-wave PWM driver from Toshiba Semiconductor. The TC78B016FTG features Intelligent Phase Control (InPAC) for automatic motor phase adjustment, eliminating manual calibration, supporting an external power supply from 6V to 30V, and adjusting current output up to 3A. It also includes various control and diagnostic features such as rotational speed output, brake function, speed command, and safety detections with visual indicators. The onboard DAC also offers additional tunability for motor control enhancements like lead angle control, output duty cycle, motor lockout, and PWM frequency selection.

[Learn More]