TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142092 times)
  2. FAT32 Library (75352 times)
  3. Network Ethernet Library (59522 times)
  4. USB Device Library (49547 times)
  5. Network WiFi Library (45338 times)
  6. FT800 Library (44957 times)
  7. GSM click (31466 times)
  8. mikroSDK (30511 times)
  9. microSD click (27827 times)
  10. PID Library (27628 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DAC 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: DAC

Downloaded: 344 times

Not followed.

License: MIT license  

DAC 5 Click carries Texas Instruments DAC53608 IC, a low-power, eight-channel, 10-bit buffered Digital-to-Analog Converter.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DAC 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DAC 5 Click" changes.

Do you want to report abuse regarding "DAC 5 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


DAC 5 Click

DAC 5 Click carries Texas Instruments DAC53608 IC, a low-power, eight-channel, 10-bit buffered Digital-to-Analog Converter.

dac5_click.png

Click Product page


Click library

  • Author : Luka Filipovic
  • Date : Nov 2019.
  • Type : I2C type

Software Support

We provide a library for the Dac5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Dac5 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void dac5_cfg_setup ( dac5_cfg_t *cfg );

  • Initialization function.

    DAC5_RETVAL dac5_init ( dac5_t ctx, dac5_cfg_t cfg );

Example key functions :

  • Function for sending data to one output

    uint8_t dac5_send_data ( dac5_t *ctx, uint8_t data_reg, uint16_t data_buf );

  • Function for configurating Click

    void dac5_config ( dac5_t *ctx, uint16_t config_data );

  • Function for reading device id

    uint16_t dac5_get_device_id ( dac5_t *ctx );

Examples Description

This demo example sends digital signal to one of the outputs and converts it to analog

The demo application is composed of two sections :

Application Init

Initializes driver init, tests communication and configures device for measuring


void application_init ( void )
{
    log_cfg_t log_cfg;
    dac5_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    dac5_cfg_setup( &cfg );
    DAC5_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    dac5_init( &dac5, &cfg );

    if ( dac5_get_device_id( &dac5 ) != DAC5_DEVICE_ID )
    {
        log_printf( &logger, "ERROR - DEVICE IS NOT READY\r\n" );
        log_printf( &logger, "Please check the onboard jumpers position.\r\n" );
        for ( ; ; );
    }

    dac5_config( &dac5, DAC5_CONFIG_GLOBAL_ENABLED );
    log_printf( &logger, "The Click board is configured.\r\n" );

    Delay_ms ( 100 );
}

Application Task

Sets the channel H with different values and logs the expected output on USB UART


void application_task ( void )
{
    for ( uint16_t cnt = DAC5_MIN_DATA; cnt < DAC5_MAX_DATA; cnt += 500 )
    {
        if ( dac5_send_data( &dac5, DAC5_REG_DAC_H_DATA, cnt ) == DAC5_ERROR )
        {
            log_printf( &logger, "ERROR SENDING DATA\r\n" );
        }
        else
        {
            log_printf( &logger, "Expected output on channel H:\t %d mV\r\n", ( uint16_t )( ( ( float ) cnt / DAC5_MAX_DATA ) * dac5.vref ) );
        }
        log_printf( &logger,"------------------------------------\r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
}  

Note

In order to improve the accuracy, measure the voltage on the Click board VrefIN SEL jumper and set it as VREF.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Dac5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

AN to PWM 2 Click

0

AN to PWM 2 Click is a compact add-on board that contains an easy-to-use component that converts the value of the input analog signal to a fixed frequency PWM voltage output, with a duty cycle proportional to the input voltage. This board features the LTC6992CS6, a silicon oscillator with an easy-to-use analog voltage-controlled pulse width modulation (PWM) capability from Analog Devices. It features the PWM signal controlled by analog input in range of -2.5V to 2.5V, frequency range up to 1 MHz, frequency error less than 1.7%, and it has good temperature stability. It has many features that make it well suited for heater control, PWM servo loops, LED dimming, signal isolation, and other duty cycle control applications.

[Learn More]

Brushless 17 Click

0

Brushless 17 Click is a compact add-on board suitable for controlling brushless DC (BLDC) motors with any MCU. This board features the L6229Q, DMOS fully integrated three-phase BLDC motor driver with overcurrent protection from STMicroelectronics. This motor driver combines isolated DMOS power transistors with CMOS and bipolar circuits on the same chip, realized in BCD (Bipolar-CMOS-DMOS) multipower technology. It includes all the circuitry for a three-phase BLDC motor drive, including a three-phase DMOS bridge, a constant off-time PWM current controller, and the decoding logic for single-ended hall sensors that generate the required sequence for the power stage.

[Learn More]

Spectral click

5

Spectral click is a light multispectral sensing device, which uses the state-of-the-art sensor IC for a very accurate true-color sensing. Spectral click provides a direct reading of the XYZ color coordinates, consistent with the CIE 1931 2. standard color space.

[Learn More]