TOP Contributors

  1. MIKROE (2663 codes)
  2. Alcides Ramos (358 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (137111 times)
  2. FAT32 Library (70238 times)
  3. Network Ethernet Library (56129 times)
  4. USB Device Library (46434 times)
  5. Network WiFi Library (42080 times)
  6. FT800 Library (41390 times)
  7. GSM click (29118 times)
  8. mikroSDK (26564 times)
  9. PID Library (26503 times)
  10. microSD click (25487 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DAC 5 click

Rating:

5

Author: MIKROE

Last Updated: 2019-08-27

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: DAC

Downloaded: 2946 times

Not followed.

License: MIT license  

DAC 5 Click carries Texas Instruments DAC53608 IC, a low-power, eight-channel, 10-bit buffered Digital-to-Analog Converter.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DAC 5 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DAC 5 click" changes.

Do you want to report abuse regarding "DAC 5 click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

DAC 5 click

DAC 5 click

Native view of the DAC 5 click board.

View full image
DAC 5 click

DAC 5 click

Front and back view of the DAC 5 click board.

View full image

Library Description

The library initializes and defines the I2C bus and drivers that offer a choice for writing data in register and reads data from register. The library includes function for sending data to output, configuration device, sets LDAC states, reading device info(DEVICE ID), software reset, clear and generic read and write functions.

Key functions:

  • uint8_t dac5_sendData(uint8_t dataReg, uint16_t dataBuff) - Function for sending data to output
  • void dac5_config(uint16_t configData) - Configuration function
  • uint8_t dac5_setLdacPin(uint8_t status) - Function for setting LDAC pin status
  • void dac5_clear() - Function for clearing data from output

Examples description

The application is composed of three sections :

  • System Initialization - Initializes I2C module
  • Application Initialization - Initializes driver init, tests communication and configures device for measureing
  • Application Task - Sends 4 different values to one output and prints expected measurement
void applicationTask()
{
    uint16_t sender[4] = {0x0118, 0x0FF0, 0x0AAC, 0x0DD4};
    uint16_t expected[4] = {140, 2030, 1360, 1760};
    uint8_t endCount = 4;
    uint8_t i;

    for (i = 0; i < endCount; i++)
    {
        if (dac5_sendData(_DAC5_REG_DAC_A_DATA, sender[i]) == _DAC5_ERROR)
        {
            mikrobus_logWrite( "-ERROR SENDING DATA", _LOG_LINE);
            mikrobus_logWrite( " ", _LOG_LINE);
        }
        else
        {
            mikrobus_logWrite( "-SUCCESFUL SENDING DATA", _LOG_LINE);
            mikrobus_logWrite( " ", _LOG_LINE);
        
            mikrobus_logWrite( "Sending : ", _LOG_TEXT);
            IntToStr(sender[i], demoText);
            mikrobus_logWrite( demoText, _LOG_LINE);

            mikrobus_logWrite( "Expected return around : ", _LOG_TEXT);
            IntToStr(expected[i], demoText);
            mikrobus_logWrite( demoText, _LOG_TEXT);
            mikrobus_logWrite( " mV ", _LOG_LINE);   
        }
        Delay_ms ( 5000 );
        dac5_clear();
        mikrobus_logWrite( "Clearing output... ", _LOG_LINE);
        mikrobus_logWrite( " ", _LOG_LINE);
        mikrobus_logWrite( " ", _LOG_LINE);
        Delay_ms ( 2000 );
    }

    mikrobus_logWrite( "''''''''''''''''''''''''''''''", _LOG_LINE);
    mikrobus_logWrite( " ", _LOG_LINE);
    mikrobus_logWrite( " ", _LOG_LINE);
    
    Delay_ms ( 1000 );
}

Other mikroE Libraries used in the example:

  • I2C
  • Conversions

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

7x10 G click

0

7x10 G click is a LED dot matrix display click, which can be used to display graphics or letters in a very simple and easy way. The click board has two LED dot matrix modules with 7x5 stylish, round, dot-like LED elements. These displays produce clean and uniform patterns since the elements are optically isolated from each other and there is no light bleeding between the adjacent LED cells. Additionally, turn-on and turn-off times of the matrix cells are optimized for a clean and fluid display performance, with no flickering or lag.

[Learn More]

BLE 12 click

0

BLE 12 Click is a compact add-on board that provides BT/BLE connectivity for any embedded application. This board features the BM832A, a powerful and highly flexible, ultra low power Bluetooth Low Energy (BLE) module from Fanstel. Based on the Nordic nRF52 SoC, the BM832A supports Bluetooth 5.0 Low-Energy (BLE) connectivity while delivering RF range and performance, debugging and enhanced security features, and low power consumption. It also comes with an ARM Cortex™ M4(F) MCU up to 192kB flash and 24kB RAM, embedded 2.4GHz multi-protocol transceiver, and an integrated PCB trace antenna. This Click board™ is suitable for low-cost Bluetooth low energy applications such as building automation and sensor networks, portable medical, connected home, and more.

[Learn More]

Flash 12 click

0

Flash 12 Click is a compact add-on board representing a highly reliable memory solution. This board features the AT25EU0041A, a 4Mbit serial flash memory from Renesas, known for its ultra-low power consumption. This Click board™ is specifically designed to address the needs of systems operating at the IoT network's edge, providing an optimal solution for program code storage and execution directly from NOR Flash memory. It stands out for its innovative erase architecture, offering short erase times and low power consumption across operations, including reading, programming, and erasing.

[Learn More]