TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139248 times)
  2. FAT32 Library (71743 times)
  3. Network Ethernet Library (57115 times)
  4. USB Device Library (47428 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28073 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LEM Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Measurements

Downloaded: 186 times

Not followed.

License: MIT license  

LEM Click carries the LTS 6-NP current transducer and MCP3201 ADC converter. The Click can measure AC and DC current with exceptional speed, up to 200 KHz.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LEM Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LEM Click" changes.

Do you want to report abuse regarding "LEM Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


LEM Click

LEM Click carries the LTS 6-NP current transducer and MCP3201 ADC converter. The Click can measure AC and DC current with exceptional speed, up to 200 KHz.

lem__click.png

Click Product page


Click library

  • Author : Jovan Stajkovic
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Lem Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Lem Click driver.

Standard key functions :

  • Config Object Initialization function.

    void lem_cfg_setup ( lem_cfg_t *cfg );

  • Initialization function.

    LEM_RETVAL lem_init ( lem_t ctx, lem_cfg_t cfg );

Example key functions :

  • Function is used to read current in amperes or milliamperes.

    float lem_get_current ( lem_t *ctx, float coef );

Examples Description

Demo app measures and displays current by using LEM Click board.

The demo application is composed of two sections :

Application Init

Initalizes SPI, LOG and Click drivers.


void application_init ( void )
{
    log_cfg_t log_cfg;
    lem_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    lem_cfg_setup( &cfg );
    LEM_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    lem_init( &lem, &cfg );
    log_printf( &logger, "---------------------\r\n" );
    log_printf( &logger, "      LEM Click      \r\n" );
    log_printf( &logger, "---------------------\r\n" );
}

Application Task

This is an example that shows the capabilities of the LEM Click by measuring current passing through the conductor placed through the hole on the sensor.


void application_task ( void )
{
    current = lem_get_current( &lem, LEM_MILIAMP_COEF );

    log_printf( &logger, " Current : %.2f mA \r\n", current );
    log_printf( &logger, "---------------------\r\n" );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Lem

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

ADC 9 Click

0

ADC 9 Click is 8th channel analog to digital converter expansion board, for projects where you have demand for multi channel ADC conversion such as microcontrollers with small number or none analog inputs. This Click board is based on MCP3564 a 24-bit Delta-Sigma Analog-to-Digital Converter with programmable data rate of up to 153.6 ksps from Microchip.

[Learn More]

1x4 RGB Click

0

1x4 RGB Click is a compact add-on board that creates vivid and dynamic lighting effects. This board features the LP5812, an advanced RGB LED driver from Texas Instruments. It features ultra-low operation current, an autonomous animation engine, and support for both analog and PWM dimming. The board operates with 3.3V or 5V logic voltage levels and communicates with the host MCU via a standard 2-wire I2C interface. It is suitable for portable and wearable electronics, gaming, home entertainment, IoT, networking, industrial HMI, and many more.

[Learn More]

HOD CAP Click

0

HOD CAP Click is a compact add-on board that adds a smart sensing solution to your application. This board features the AS8579, a capacitive sensor from ams OSRAM. The sensor features I/Q signal demodulation, parasitic influences from cable, and PCB protection. It has ten sense outputs, five of which come with sensing line filter circuits. This Click board™ makes the perfect solution for the development of autonomous driving applications such as hands-on steering wheel detection and detection of any human presence inside a vehicle or outside of the vehicle, e.g., for automatic trunk opener and more.

[Learn More]