We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.13
mikroSDK Library: 2.0.0.0
Category: Signal processing
Downloaded: 167 times
Not followed.
License: MIT license
Rec&Play Click is a digital voice recorder on a Click board™. It is based on the ISD3900, a multi-message record and playback device. It features the ChipCorder® technology, offering digital sound compression, smart message management, digitally configurable signal path, and more.
Do you want to subscribe in order to receive notifications regarding "Rec N Play Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Rec N Play Click" changes.
Do you want to report abuse regarding "Rec N Play Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4233_rec_n_play_click.zip [718.25KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Rec&Play Click is a digital voice recorder on a Click board. It is based on the ISD3900, a multi-message record and playback device. It features the ChipCorder technology, offering digital sound compression, smart message management, digitally configurable signal path, and more.
We provide a library for the RecNPlay Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for RecNPlay Click driver.
Config Object Initialization function.
void recnplay_cfg_setup ( recnplay_cfg_t *cfg );
Initialization function.
RECNPLAY_RETVAL recnplay_init ( recnplay_t ctx, recnplay_cfg_t cfg );
Function queries the ISD3900 device status.
RECNPLAY_RETVAL recplay_read_status ( recnplay_t ctx, uint8_t interr_status );
Function erases the message starting at the specified address.
RECNPLAY_RETVAL recplay_erase_msg ( recnplay_t* ctx, uint32_t mem_addr );
Function initiates a managed record at first available location in memory.
RECNPLAY_RETVAL recplay_record_msg ( recnplay_t* ctx );
This application demonstrates the process of recording a message and playing it back.
The demo application is composed of two sections :
Initializes SPI interface in proper mode and performs all the necessary commands to put the device in proper working mode (chip reset, chip power up, chip erasing, clock configuration).
void application_init ( void )
{
log_cfg_t log_cfg;
recnplay_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
recnplay_cfg_setup( &cfg );
RECNPLAY_MAP_MIKROBUS( cfg, MIKROBUS_1 );
recnplay_init( &recnplay, &cfg );
log_printf( &logger, "Chip reset...\r\n" );
recplay_reset( &recnplay );
log_printf( &logger, "Power up...\r\n" );
recplay_pwr_up( &recnplay );
wait_power_up( );
log_printf( &logger, "Chip Erasing...\r\n" );
recplay_erase_chip( &recnplay );
wait_cmd_fin( );
log_printf( &logger, "Clock Configuration...\r\n" );
status_byte = recplay_set_clk_cnfg( &recnplay, 0x34 );
log_printf( &logger, "----------------------------\r\n" );
volume = 0;
Delay_ms ( 1000 );
}
Performs the chip configuration for recording message via microphone, then records a message for 8 seconds to specified memory location. After that, it reads the recorded message address with message length and then plays the recorded message. When playback is done it erases the recorded message from memory. Afterwards, it repeats all the operations every 10 seconds.
void application_task ( void )
{
uint8_t cnt;
log_printf( &logger, "Preparing to record a message\r\n" );
for ( cnt = 0; cnt < 32; cnt++ )
{
if ( ( cnt != RECPLAY_CFG0A_REG ) && ( cnt != RECPLAY_CFG1C_REG ) && ( cnt != RECPLAY_CFG1E_REG ) )
{
wait_ready( );
temp_var = config_rec_mic[ cnt ];
status_byte = recplay_write_cnfg_reg( &recnplay, cnt, &temp_var, 1 );
}
}
wait_ready( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "Message recording" );
status_byte = recplay_record_msg_addr( &recnplay, 0x12000 );
time_record( 8 );
status_byte = recplay_stop( &recnplay );
wait_cmd_fin( );
log_printf( &logger, "End of recording\r\n" );
status_byte = recplay_read_msg_addr( &recnplay, &msg_addr, &msg_len );
log_printf( &logger, "Message Address: 0x%lx\r\n", msg_addr );
log_printf( &logger, "Message Length: %u\r\n", msg_len );
Delay_ms ( 1000 );
log_printf( &logger, "Preparing to play a message\r\n" );
set_volume( 100 );
for ( cnt = 0; cnt < 32; cnt++ )
{
if ( ( cnt != RECPLAY_CFG0A_REG ) && ( cnt != RECPLAY_CFG1C_REG ) && ( cnt != RECPLAY_CFG1E_REG ) )
{
wait_ready( );
if ( cnt == RECPLAY_CFG03_REG )
{
temp_var = volume;
}
else
{
temp_var = config_play_pwm_spk[ cnt ];
}
status_byte = recplay_write_cnfg_reg( &recnplay, cnt, &temp_var, 1 );
}
}
wait_ready( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "Message is playing...\r\n" );
status_byte = recplay_play_msg( &recnplay, 0x12000, 0 );
wait_cmd_fin( );
log_printf( &logger, "End of playing...\r\n" );
log_printf( &logger, "Status Byte: 0x%x\r\n", ( uint16_t ) status_byte );
log_printf( &logger, "Interrupt byte: 0x%x\r\n", ( uint16_t ) interr_byte );
Delay_ms ( 1000 );
log_printf( &logger, "Message erasing...\r\n" );
status_byte = recplay_erase_msg( &recnplay, 0x12000 );
wait_cmd_fin( );
log_printf( &logger, "End of erasing\r\n" );
log_printf( &logger, "----------------------------\r\n" );
Delay_ms ( 1000 );
}
The ISD3900 must be properly configured to work in record mode every time when user wants to record a message. When user wants to play a recorded message, then ISD3900 must be properly configured, but now to work in play mode.
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.