We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.6
mikroSDK Library: 2.0.0.0
Category: Brushed
Downloaded: 83 times
Not followed.
License: MIT license
H-Bridge 16 Click is a compact add-on board with an H-Bridge gate driver, also known as a full-bridge pre-driver. This board features the DRV8262, a dual H-Bridge motor driver from Texas Instruments. The motor driver is designed for a variety of industrial applications and can drive one or two brushed DC motors, one stepper motor, and one or two thermoelectric coolers (TEC). It can operate in a wide supply voltage range of 4.5V to 65V.
Do you want to subscribe in order to receive notifications regarding "H-Bridge 16 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "H-Bridge 16 Click" changes.
Do you want to report abuse regarding "H-Bridge 16 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
5477_h_bridge_16_clic.zip [606.05KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
H-Bridge 16 Click is a compact add-on board with an H-Bridge gate driver, also known as a full-bridge pre-driver. This board features the DRV8262, a dual H-Bridge motor driver from Texas Instruments. The motor driver is designed for a variety of industrial applications and can drive one or two brushed DC motors, one stepper motor, and one or two thermoelectric coolers (TEC). It can operate in a wide supply voltage range of 4.5V to 65V.
We provide a library for the H-Bridge 16 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for H-Bridge 16 Click driver.
hbridge16_cfg_setup
Config Object Initialization function.
void hbridge16_cfg_setup ( hbridge16_cfg_t *cfg );
hbridge16_init
Initialization function.
err_t hbridge16_init ( hbridge16_t *ctx, hbridge16_cfg_t *cfg );
hbridge16_default_cfg
Click Default Configuration function.
err_t hbridge16_default_cfg ( hbridge16_t *ctx );
hbridge16_set_pins
H-Bridge 16 set pins function.
err_t hbridge16_set_pins ( hbridge16_t *ctx, uint8_t set_mask, uint8_t clr_mask );
hbridge16_set_mode
H-Bridge 16 set mode function.
err_t hbridge16_set_mode ( hbridge16_t *ctx, uint8_t mode_sel );
hbridge16_set_out_state
H-Bridge 16 set output function.
err_t hbridge16_set_out_state ( hbridge16_t *ctx, uint8_t out_state );
This example demonstrates the use of the H-Bridge 16 Click board by driving the motor in both directions with braking and freewheeling.
The demo application is composed of two sections :
Initializes the driver and performs the Click default configuration.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
hbridge16_cfg_t hbridge16_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
hbridge16_cfg_setup( &hbridge16_cfg );
HBRIDGE16_MAP_MIKROBUS( hbridge16_cfg, MIKROBUS_1 );
if ( I2C_MASTER_ERROR == hbridge16_init( &hbridge16, &hbridge16_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( HBRIDGE16_ERROR == hbridge16_default_cfg ( &hbridge16 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
This example is driving a motor in both directions with motor braking and freewheeling in between.
void application_task ( void )
{
log_printf( &logger, " Motor in forward mode. \r\n" );
hbridge16_set_out_state( &hbridge16, HBRIDGE16_DRIVE_MOTOR_FORWARD );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, " Motor brake is on \r\n" );
hbridge16_set_out_state( &hbridge16, HBRIDGE16_DRIVE_MOTOR_BRAKE );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, " Motor in reverse mode. \r\n" );
hbridge16_set_out_state( &hbridge16, HBRIDGE16_DRIVE_MOTOR_REVERSE );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, " Motor is coasting \r\n" );
hbridge16_set_out_state( &hbridge16, HBRIDGE16_DRIVE_MOTOR_FREEWHEEL );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.