TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140539 times)
  2. FAT32 Library (73024 times)
  3. Network Ethernet Library (58037 times)
  4. USB Device Library (48213 times)
  5. Network WiFi Library (43826 times)
  6. FT800 Library (43295 times)
  7. GSM click (30359 times)
  8. mikroSDK (28987 times)
  9. PID Library (27116 times)
  10. microSD click (26721 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LTE IoT 6 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: LTE IoT

Downloaded: 297 times

Not followed.

License: MIT license  

LTE IoT 6 Click is a compact add-on board that contains an IoT module with worldwide coverage.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LTE IoT 6 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LTE IoT 6 Click" changes.

Do you want to report abuse regarding "LTE IoT 6 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


LTE IoT 6 Click

LTE IoT 6 Click is a compact add-on board that contains an IoT module with worldwide coverage. This board features the SARA-R412M, a cellular module that offers multi-band data transmissions for Low Power Wide Area solutions in a compact form factor from u-Blox.

lteiot6_click.png

Click Product page


Click library

  • Author : Luka Filipovic
  • Date : Nov 2020.
  • Type : UART GPS/GNSS type

Software Support

We provide a library for the lteiot6 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Library Description

This library contains API for lteiot6 Click driver.

Standard key functions :

  • lteiot6_cfg_setup Config Object Initialization function.

    void lteiot6_cfg_setup ( lteiot6_cfg_t *cfg );
  • lteiot6_init Initialization function.

    lteiot6_RETVAL lteiot6_init ( lteiot6_t *ctx, lteiot6_cfg_t *cfg );
  • lteiot6_default_cfg Click Default Configuration function.

    void lteiot6_default_cfg ( lteiot6_t *ctx );

Example key functions :

  • lteiot6_send_cmd Send command function.

    void lteiot6_send_cmd ( lteiot6_t *ctx, char *cmd );
  • lteiot6_set_sim_apn Set SIM APN.

    void lteiot6_set_sim_apn ( lteiot6_t *ctx, char *sim_apn );
  • lteiot6_send_sms_pdu Send SMS message to number in pdu mode.

    err_t lteiot6_send_sms_pdu ( lteiot6_t *ctx, char *service_center_number, char *phone_number, char *sms_text );

Examples Description

Application example shows device capability to connect network and send SMS messages using standard "AT" commands.

The demo application is composed of two sections :

Application Init

Initializes driver and wake-up module and test communication.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    lteiot6_cfg_t lteiot6_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    Delay_ms ( 1000 );
    log_info( &logger, " Application Init " );
    Delay_ms ( 1000 );

    // Click initialization.
    lteiot6_cfg_setup( &lteiot6_cfg );
    LTEIOT6_MAP_MIKROBUS( lteiot6_cfg, MIKROBUS_1 );
    err_t init_flag  = lteiot6_init( &lteiot6, &lteiot6_cfg );
    if ( init_flag == UART_ERROR ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    lteiot6_process();
    lteiot6_clear_app_buf(); 
    app_buf_len = 0;
    app_buf_cnt = 0;

    lteiot6_reset( &lteiot6 );
    lteiot6_power_on( &lteiot6 );

    //Check communication
    lteiot6_send_cmd( &lteiot6, LTEIOT6_CMD_AT );
    error_flag = lteiot6_rsp_check();
    lteiot6_error_check( error_flag );

    //Check fw version
    lteiot6_send_cmd( &lteiot6, LTEIOT6_CMD_ATI );
    error_flag = lteiot6_rsp_check();
    lteiot6_error_check( error_flag );

    log_info( &logger, " Application Task " );
    example_state = LTEIOT6_CONFIGURE_FOR_CONNECTION;
}

Application Task

Application taks is split in few stages:

  • LTEIOT6_CONFIGURE_FOR_CONNECTION: Sets configuration to device to be able to connect to newtork.
  • LTEIOT6_WAIT_FOR_CONNECTION:

    Checks device response untill device sends information that it is connected to network.

  • LTEIOT6_CHECK_CONNECTION:

    Checks device connection status parameters.

  • LTEIOT6_CONFIGURE_FOR_MESSAGES:

    Sets configuration to device to send SMS messages.

  • LTEIOT6_MESSAGES:

    Sends message in selected mode (PDU/TXT).


void application_task ( void ) 
{
    switch ( example_state )
    {
        case LTEIOT6_CONFIGURE_FOR_CONNECTION:
        {
            if ( LTEIOT6_OK == lteiot6_configure_for_connection( ) )
            {
                example_state = LTEIOT6_WAIT_FOR_CONNECTION;
            }
            break;
        }
        case LTEIOT6_WAIT_FOR_CONNECTION:
        {
            if ( LTEIOT6_OK == lteiot6_check_connection( ) )
            {
                example_state = LTEIOT6_CHECK_CONNECTION;
            }
            break;
        }
        case LTEIOT6_CHECK_CONNECTION:
        {
            Delay_ms ( 1000 );
            if ( LTEIOT6_OK == lteiot6_check_connection_parameters( ) )
            {
                example_state = LTEIOT6_CONFIGURE_FOR_MESSAGES;
            }
            Delay_ms ( 1000 );
            break;
        }
        case LTEIOT6_CONFIGURE_FOR_MESSAGES:
        {
            if ( LTEIOT6_OK == lteiot6_configure_for_meesages( ) )
            {
                example_state = LTEIOT6_MESSAGES;
            }
            Delay_ms ( 1000 );
            break;
        }
        case LTEIOT6_MESSAGES:
        {
            lteiot6_send_meesage();
            Delay_ms ( 1000 );
            break;
        }
        default:
        {
            log_error( &logger, " Example state." );
            break;
        }
    }
}

Note

In order for the example to work, user needs to set the phone number to which he wants to send an SMS, and also will need to set an APN and SMSC of entered SIM card. Enter valid data for the following macros: SIM_APN, SIM_SMSC and PHONE_NUMBER_TO_MESSAGE.

E.g. SIM_APN "vip.iot", SMSC_ADDRESS_CSCA "\"+381999999\",145", SMSC_ADDRESS_PDU "+381999999\" , PHONE_NUMBER_TO_MESSAGE "+381659999999", PHONE_NUMBER_TO_MESSAGE "999999999"

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LTEIoT6

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Magnetic Rotary 5 Click

0

Magnetic Rotary 5 Click is a compact add-on board for accurate magnet-position sensing. This board features the AS5134, a contactless magnetic rotary encoder from ams AG for accurate angular measurement over a full turn of 360º. It is designed to provide accurate angle measurements with a simple two-pole magnet rotating over the center of the chip, featuring an integrated Hall element, analog front end, and digital signal processing. Offering a high resolution of 8.5 bits, which equates to 360 positions per revolution, it is also capable of high-speed performance, with a maximum RPM of 76875. It can accommodate a wide range of magnetic fields, from 20 to 80mT. It also has an onboard header for incremental and commutation signals of their respective A/B/I and U/V/W signals and pins for Daisy Chain Mode and OTP programming.

[Learn More]

Smart Buck click

5

Smart Buck click is the two-channel step-down DC/DC converter and regulator, with plenty of additional functions. It can provide voltage measurement at each of its two programmable voltage outputs, as well as the measurement of the current consumption.

[Learn More]

Charger Click

0

Charger Click is a compact add-on board providing a standalone battery charger and monitor. This board features Microchip's MCP73831, a miniature single-cell, fully integrated Li-Ion, Li-Polymer charge management controller. The charge voltage of the MCP73831 is set to 4.20V, and a charge current to 250mA with an external resistor. In addition, this Click board™ features the DS2438, a smart battery monitor that monitors the total amount of current going into and out of the battery.

[Learn More]