TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141888 times)
  2. FAT32 Library (75038 times)
  3. Network Ethernet Library (59344 times)
  4. USB Device Library (49346 times)
  5. Network WiFi Library (45155 times)
  6. FT800 Library (44701 times)
  7. GSM click (31300 times)
  8. mikroSDK (30262 times)
  9. microSD click (27685 times)
  10. PID Library (27576 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

BUCK Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 342 times

Not followed.

License: MIT license  

BUCK Click is a buck switching regulator that accepts a wide input voltage range of up to 40V and steps it down to 3.3V or 5V.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "BUCK Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "BUCK Click" changes.

Do you want to report abuse regarding "BUCK Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


BUCK Click

BUCK Click is a buck switching regulator that accepts a wide input voltage range of up to 40V and steps it down to 3.3V or 5V.

buck_click.png

Click Product page


Click library

  • Author : Katarina Perendic
  • Date : nov 2019.
  • Type : GPIO type

Software Support

We provide a library for the Buck Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Buck Click driver.

Standard key functions :

  • Config Object Initialization function.

    void buck_cfg_setup ( buck_cfg_t *cfg );

  • Initialization function.

    BUCK_RETVAL buck_init ( buck_t ctx, buck_cfg_t cfg );

  • Click Default Configuration function.

    void buck_default_cfg ( buck_t *ctx );

Example key functions :

  • Setting the switching frequency function

    void buck_switch_frequency ( buck_t *ctx, uint8_t frequency );

  • Select buck mode (Disable / Enable)

    void buck_set_mode ( buck_t *ctx, uint8_t mode );

  • Get state internal comparator function

    uint8_t buck_get_power_good ( buck_t *ctx );

Examples Description

The demo application displays frequency change and voltage regulation using a BUCK Click.

The demo application is composed of two sections :

Application Init

Configuring clicks and log objects. Settings the Click in the default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;
    buck_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    buck_cfg_setup( &cfg );
    BUCK_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    buck_init( &buck, &cfg );
    Delay_ms ( 100 );

    buck_software_reset( &buck );
    buck_default_cfg( &buck );
}

Application Task

This is a example which demonstrates the use of Buck Click board. Checks if it has reached the set output voltage and sets a different frequency to the LT3976 chip every 5 sec.

void application_task ( void )
{
    //  Task implementation.
    if ( buck_get_power_good( &buck ) == 1 )
    {
        log_info( &logger, "----  Power good output voltage!  ----" );
    }
    Delay_ms ( 1000 );

    log_info( &logger, "----  Switching frequency 400kHz!  ----" );
    buck_switch_frequency( &buck, BUCK_FREQ_400KHz );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_info( &logger, "----  Switching frequency 800kHz!  ----" );
    buck_switch_frequency( &buck, BUCK_FREQ_800KHz );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Buck

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Ambient 18 Click

0

Ambient 18 Click is a compact add-on board used to sense the amount of the present ambient light. This board features the BH1680FVC, an analog current-output ambient light sensor from Rohm Semiconductor. The BH1680FVC can detect a wide range of illuminance up to 10klx and provides excellent responsivity close to the human eyes' response. Besides, it is also characterized by low sensitivity variation across various light sources, a built-in shutdown function, and the ability to process the output signal in analog or digital form. This Click board™ is the most suitable for obtaining ambient light data for adjusting brightness in applications that require power saving and better visibility.

[Learn More]

6DOF IMU 22 Click

0

6DOF IMU 22 Click is a compact add-on board for advanced motion tracking. This board features the ICM-42670-P, a high-performance 6-axis MEMS MotionTracking IMU from TDK InvenSense. The ICM-42670-P integrates a 3-axis gyroscope and accelerometer, offering exceptional precision in motion detection. It supports both I2C and SPI interfaces for communication, features a substantial 2.25Kbytes FIFO, and includes two programmable interrupts that enhance power efficiency through a wake-on-motion feature.

[Learn More]

GPS2 click - Example

0

Simple example which demonstrates usage of the GPS2 Click board with QUECTEL L30 GPS module. It displays a map of the world on the TFT and shows the location of the GPS module on it.

[Learn More]