TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141555 times)
  2. FAT32 Library (74493 times)
  3. Network Ethernet Library (59030 times)
  4. USB Device Library (49026 times)
  5. Network WiFi Library (44795 times)
  6. FT800 Library (44371 times)
  7. GSM click (31048 times)
  8. mikroSDK (29915 times)
  9. microSD click (27482 times)
  10. PID Library (27473 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MIC24055 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 277 times

Not followed.

License: MIT license  

MIC24055 Click is the buck regulator that can deliver continuous output current up to 8A and can step down voltages from up to 19V which makes this Click board easy to use with many power sources commonly available.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MIC24055 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MIC24055 Click" changes.

Do you want to report abuse regarding "MIC24055 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


MIC24055 Click

MIC24055 Click is the buck regulator that can deliver continuous output current up to 8A and can step down voltages from up to 19V which makes this Click board easy to use with many power sources commonly available.

mic24055_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : jan 2020.
  • Type : SPI type

Software Support

We provide a library for the Mic24055 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Mic24055 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void mic24055_cfg_setup ( mic24055_cfg_t *cfg );

  • Initialization function.

    MIC24055_RETVAL mic24055_init ( mic24055_t ctx, mic24055_cfg_t cfg );

Example key functions :

  • Generic transfer function.

    void mic24055_generic_transfer ( mic24055_t ctx, spi_master_transfer_data_t block );

  • Generic transfer function.

    void mic24055_dac_output ( mic24055_t *ctx, uint16_t value_dac );

  • Set output voltage.

    void mic24055_set_vout ( mic24055_t *ctx, uint16_t voltage );

Examples Description

This application is the buck regulator.

The demo application is composed of two sections :

Application Init

Initializes Click driver.


void application_init ( void )
{
    log_cfg_t log_cfg;
    mic24055_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    mic24055_cfg_setup( &cfg );
    MIC24055_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    mic24055_init( &mic24055, &cfg );
}

Application Task

Slowly alternates the Click output between two values.


void application_task ( void )
{
    mic24055_set_vout( &mic24055, 1500 );
    log_printf( &logger, "VOUT set to 1500mV \r\n" );
    log_printf( &logger, "-------------------------- \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    mic24055_set_vout( &mic24055, 3300 );
    log_printf( &logger, "VOUT set to 3300mV \r\n" );
    log_printf( &logger, "-------------------------- \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Mic24055

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

BLE 7 Click

0

The BLE 7 Click is a Click board™ witch provide BT/BLE connectivity for any embedded application. BLE 7 Click based on the BGX13S22GA-V31, a SiP module from Silicon Labs with a buit-in antenna. Click board™ an ultra-small, high-performing, Bluetooth low energy module for easy integration of Bluetooth low energy connectivity (BLE) into various electronic devices. Given its features, this Click can be used for health, sports, and wellness devices as well as Industrial, home, and building automation; and smart phone, tablet, and PC accessories.

[Learn More]

Stepper 14 Click

5

The Stepper 14 Click is a Click board that features the DRV8847PWPR, a step motor driver, from Texas Instruments. This Click boardâ„¢ provides a bipolar step motor controle, It features an H-bridge bipolar step motor driver, which supports full-, half-, quarter-, or eighth-step modes.

[Learn More]

HVAC Click

0

HVAC Click is a compact add-on board that contains Sensirion’s next-generation miniature CO2 sensor. This board features the SCD41, a carbon dioxide sensor build on the photoacoustic sensing principle, and Sensirion’s patented PASens® and CMOSens® technology to offer high accuracy at a minor form factor.

[Learn More]