TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141574 times)
  2. FAT32 Library (74513 times)
  3. Network Ethernet Library (59053 times)
  4. USB Device Library (49047 times)
  5. Network WiFi Library (44817 times)
  6. FT800 Library (44376 times)
  7. GSM click (31066 times)
  8. mikroSDK (29924 times)
  9. microSD click (27487 times)
  10. PID Library (27485 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Smart Buck Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 349 times

Not followed.

License: MIT license  

Smart Buck Click is the two-channel step-down DC/DC converter and regulator, with plenty of additional functions. It can provide voltage measurement at each of its two programmable voltage outputs, as well as the measurement of the current consumption. In addition, it can also provide power consumption measurements of the Click board™ itself, both at the mikroBUS™ +5V power rail, and the external voltage input terminal. Finally, there is 2kbit of EEPROM at disposal, which can be used for logging the measurements, storage of the working parameters, or any other type of general purpose data.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Smart Buck Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Smart Buck Click" changes.

Do you want to report abuse regarding "Smart Buck Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Smart Buck Click

Smart Buck Click is the two-channel step-down DC/DC converter and regulator, with plenty of additional functions. It can provide voltage measurement at each of its two programmable voltage outputs, as well as the measurement of the current consumption.

smartbuck_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Smart Buck Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Smart Buck Click driver.

Standard key functions :

  • Config Object Initialization function.

    void smartbuck_cfg_setup ( smartbuck_cfg_t *cfg );

  • Initialization function.

    SMARTBUCK_RETVAL smartbuck_init ( smartbuck_t ctx, smartbuck_cfg_t cfg );

  • Click Default Configuration function.

    void smartbuck_default_cfg ( smartbuck_t *ctx );

Example key functions :

  • Function performs the desired command for PAC1934.

    uint8_t smartbuck_send_cmd_PAC ( smartbuck_t *ctx, uint8_t command );

  • Function reads and calculates the voltage, current and power data from PAC1934 activated channels.

    void smartbuck_get_data( smartbuck_t ctx, float voltage, float current, float power );

  • Function reads the desired number of bytes from the PAC1934 registers.

    uint8_t smartbuck_block_read_PAC( smartbuck_t ctx, uint8_t reg_addr, uint8_t data_out, uint8_t n_bytes );

Examples Description

This application reads voltage, current, and power from all available channels.

The demo application is composed of two sections :

Application Init

Initializes I2C interface and logger and peforms the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;
    smartbuck_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    smartbuck_cfg_setup( &cfg );
    SMARTBUCK_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    smartbuck_init( &smartbuck, &cfg );
    smartbuck_default_cfg( &smartbuck );
}   

Application Task

Sends command for updating data registers with new converted data, then waits 500ms and after that reads new data from data registers. In this way we can get voltage, current and power data from activated channels. Results are being logged on USB UART.


void application_task ( void )
{
    smartbuck_send_cmd_pac( &smartbuck, SMARTBUCK_REFRESH_V_CMND );
    Delay_ms ( 500 );
    smartbuck_get_data( &smartbuck, &voltage_res[ 0 ], &current_res[ 0 ], &power_res[ 0 ] );

    check_byte = 0x80;
    idx = 0;

    for ( cnt = 0; cnt < 4; cnt++ )
    {
        if ( ( smartbuck.enabled_chann & check_byte ) == 0 )
        {
            channel_log();

            log_printf( &logger, "U: %.2f V    ", voltage_res[ idx ] );
            log_printf( &logger, "I: %.2f mA    ", current_res[ idx ] );
            log_printf( &logger, "P: %.2f mW    ", power_res[ idx ] );

            idx++;
        }
        check_byte >>= 1;
    }

    log_printf( &logger, "\n");
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub account.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SMARTBUCK

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

SAML Touch click

5

SAML Touch Click is a Click board equipped with two capacitive touchpads and one capacitive slider.

[Learn More]

PIR Click

0

PIR Click is a pyroelectric sensor which generates a voltage when exposed to infrared radiation emitted by live bodies. It is equipped with the PL-N823-01, an infrared sensor from KEMET that uses the pyrolectric effect of ceramic by absorbing infrared rays emitted from the human body, while the the white plastic Fresnel lens covering the sensor filters visible light.

[Learn More]

Brushless 24 Click

0

Brushless 24 Click is a compact add-on board that controls brushless DC (BLDC) motors with any MCU. This board features the DRV10866, a 3- phase sensorless motor driver from Texas Instruments with integrated power MOSFETs with current drive capability up to 800mA peak. The DRV10866 implements a 150° commutation (sensorless BEMF control scheme) for a 3-phase motor alongside a synchronous rectification mode of operation that achieves increased efficiency for motor driver applications. Besides choosing the motor speed and a wide operating voltage range of up to 5V, it also has several built-in protection circuits, such as undervoltage, lock detection, voltage surge protection, and overtemperature.

[Learn More]