TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140539 times)
  2. FAT32 Library (73024 times)
  3. Network Ethernet Library (58038 times)
  4. USB Device Library (48213 times)
  5. Network WiFi Library (43826 times)
  6. FT800 Library (43295 times)
  7. GSM click (30359 times)
  8. mikroSDK (28987 times)
  9. PID Library (27116 times)
  10. microSD click (26721 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Vibro Motor 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Haptic

Downloaded: 185 times

Not followed.

License: MIT license  

Vibro Motor 2 Click features a compact size Eccentric Rotating Mass (ERM) motor, labeled as Z4FC1B1301781 as well as DMG3420U MOSFET to drive the ERM motor, since the MCU itself cannot provide enough power for the motor driving. This type of motor is often used for haptic feedback on many small handheld devices, such as the cellphones, pagers, RFID scanners and similar devices. This motor contains a small eccentric weight on its rotor, so while rotating it also produces vibration effect

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Vibro Motor 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Vibro Motor 2 Click" changes.

Do you want to report abuse regarding "Vibro Motor 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Vibro Motor 2 Click

Vibro Motor 2 Click features a compact size Eccentric Rotating Mass (ERM) motor, labeled as Z4FC1B1301781 as well as DMG3420U MOSFET to drive the ERM motor, since the MCU itself cannot provide enough power for the motor driving. This type of motor is often used for haptic feedback on many small handheld devices, such as the cellphones, pagers, RFID scanners and similar devices. This motor contains a small eccentric weight on its rotor, so while rotating it also produces vibration effect

vibromotor2_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jun 2021.
  • Type : PWM type

Software Support

We provide a library for the VibroMotor2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for VibroMotor2 Click driver.

Standard key functions :

  • vibromotor2_cfg_setup Config Object Initialization function.

    void vibromotor2_cfg_setup ( vibromotor2_cfg_t *cfg );
  • vibromotor2_init Initialization function.

    err_t vibromotor2_init ( vibromotor2_t *ctx, vibromotor2_cfg_t *cfg );

Example key functions :

  • vibromotor2_set_duty_cycle This function sets the PWM duty cycle in percentages ( Range[ 0..1 ] ).

    err_t vibromotor2_set_duty_cycle ( vibromotor2_t *ctx, float duty_cycle );
  • vibromotor2_pwm_stop This function stops the PWM moudle output.

    err_t vibromotor2_pwm_stop ( vibromotor2_t *ctx );
  • vibromotor2_pwm_start This function starts the PWM moudle output.

    err_t vibromotor2_pwm_start ( vibromotor2_t *ctx );

Example Description

This application contorl the speed of vibro motor.

The demo application is composed of two sections :

Application Init

Initializes GPIO driver and PWM. Configures PWM to 5kHz frequency, calculates maximum duty ratio and starts PWM with duty ratio value 0.


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    vibromotor2_cfg_t vibromotor2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    vibromotor2_cfg_setup( &vibromotor2_cfg );
    VIBROMOTOR2_MAP_MIKROBUS( vibromotor2_cfg, MIKROBUS_1 );
    err_t init_flag  = vibromotor2_init( &vibromotor2, &vibromotor2_cfg );
    if ( PWM_ERROR == init_flag ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    vibromotor2_set_duty_cycle ( &vibromotor2, 0.0 );
    vibromotor2_pwm_start( &vibromotor2 );

    log_info( &logger, " Application Task " );
}

Application Task

Allows user to enter desired command to control Vibro Motor Click board.


void application_task ( void ) {
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    vibromotor2_set_duty_cycle ( &vibromotor2, duty );
    log_printf( &logger, "> Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );

    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) {
        duty_inc = -1;
    } else if ( 0 == duty_cnt ) {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.VibroMotor2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

TempHum 22 Click

0

Temp&Hum 22 Click is a compact add-on board representing temperature and humidity sensing solution. This board features the SHT41A, a 4th generation automotive-grade relative humidity and temperature sensor from Sensirion. The SHT41A is characterized by its high accuracy (±2% RH and ±0.3°C over a wide operating temperature range) and high resolution providing 16-bit data to the host controller with a configurable I2C interface. Also, it is designed for reliable operation in harsh conditions such as condensing environments.

[Learn More]

WebcamSurveillance

10

This project shows how you can build your own simple surveillance system, using Network Ethernet Internal Library.

[Learn More]

LTE IoT 11 Click

0

LTE IoT 11 Click is a compact add-on board with an optimized global coverage module, as it supports a comprehensive set of bands required for global deployment. This board features the TX62-W, a global MTC module from Thales. It delivers global LTE-M, NB-IoT (NB1 and NB2) connectivity from a single SKU, and it is the first Thales product to adopt a revolutionary “Things” footprint. Besides, it integrates an embedded GNSS multi-constellation, state-of-the-art secure services, and more.

[Learn More]