TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139248 times)
  2. FAT32 Library (71743 times)
  3. Network Ethernet Library (57115 times)
  4. USB Device Library (47428 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28073 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Oximeter2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Biometrics

Downloaded: 373 times

Not followed.

License: MIT license  

Oximeter 2 Click is a compact add-on board perfectly suited for measuring the blood oxygen saturation.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Oximeter2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Oximeter2 Click" changes.

Do you want to report abuse regarding "Oximeter2 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Oximeter 2 Click

Oximeter 2 Click is a compact add-on board suitable for measuring blood oxygen saturation.

oximeter2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2020.
  • Type : I2C type

Software Support

We provide a library for the Oximeter2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Oximeter2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void oximeter2_cfg_setup ( oximeter2_cfg_t *cfg );

  • Initialization function.

    OXIMETER2_RETVAL oximeter2_init ( oximeter2_t ctx, oximeter2_cfg_t cfg );

Example key functions :

  • Generic read function.

    uint8_t oximeter2_generic_read ( oximeter2_t *ctx, uint8_t reg );

  • Gets state of the int pin

    uint8_t oximeter2_get_int_status ( oximeter2_t *ctx );

  • Generic function for reading als and proximity values

    uint16_t oximeter3_read_value ( oximeter3_t *ctx, uint8_t type_macro );

Examples Description

This application collects data from the sensor, calculates it and then logs the result.

The demo application is composed of two sections :

Application Init

Initializes driver and performs the device configuration which puts Time Slot A and Time Slot B modes to active state. Before the device configuration, the SW reset will be performed, which puts the registers in their initial state.


void application_init ( void )
{
    log_cfg_t log_cfg;
    oximeter2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    oximeter2_cfg_setup( &cfg );
    OXIMETER2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    oximeter2_init( &oximeter2, &cfg );
    oximeter2_default_cfg( &oximeter2 );
}

Application Task

Application measures value of oxygen level in blood of a human.


void oximeter2_write_res ( uint32_t data_write )
{
    log_printf( &logger, "%u\r\n", data_write );
}

void oximeter2_logs_results( void )
{
    uint8_t final_result;

    oximeter2_read_data( &oximeter2, &res_slot[ 0 ] );

    log_printf( &logger, "Average result per photodiode is: \r\n" );

    switch ( oximeter2.enabled_channel )
    {
        case OXIMETER2_CH3_CH4_SELECTED:
        {
            log_printf( &logger, "PD3: " );
            oximeter2_write_res( res_slot[ 2 ] );
            log_printf( &logger, "PD4: " );
            oximeter2_write_res( res_slot[ 3 ] );

            final_result = ( res_slot[ 2 ] + res_slot[ 3 ] ) / 1000;
            break;
        }
        case OXIMETER2_ALL_CHANNELS_SELECTED:
        {
            log_printf( &logger, "PD1: " );
            oximeter2_write_res( res_slot[ 0 ] );
            log_printf( &logger, "PD2: " );
            oximeter2_write_res( res_slot[ 1 ] );
            log_printf( &logger, "PD3: " );
            oximeter2_write_res( res_slot[ 2 ] );
            log_printf( &logger, "PD4: " );
            oximeter2_write_res( res_slot[ 3 ]);

            final_result = ( res_slot[ 0 ] + res_slot [ 1 ] + res_slot[ 2 ] + res_slot[ 3 ] ) / 1000;
            break;
        }
        default:
        {
            break;
        }
    }

    if (final_result > 100)
    {
        final_result = 100;
    }
    log_printf( &logger, "Average result, in percentage: %u\r\n", ( uint16_t )final_result );
    log_printf( &logger, "-------------------------\r\n" );

    Delay_ms ( 300 );
}

void application_task ( void )
{
    oximeter2_logs_results();
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Oximeter2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Peltier Click

0

The Peltier Click is a Click board™ which utilizes the SPV1050, an ultralow power energy harvester and battery charger from STMicroelectronics. The Peltier Click can charge lithium battery using thermoelectric energy harvesting device (TEG).

[Learn More]

EXPAND 6

5

EXPAND 6 Click is a compact add-on board that contains an I2C configurable multi-port I/O expander with independently configurable pins as bi-directional input/outputs or PWM outputs. This board features the CY8C9520A, 20-bit I/O expander with EEPROM, and 4 independently configurable 8-bit PWM outputs from Cypress Semiconductor.

[Learn More]

Load Cell 6 Click

0

Load Cell 6 Click is a compact add-on board representing a weigh scale solution. This board features the MAX11270, a high-performance 24-bit delta-sigma ADC that achieves excellent 130dB SNR while dissipating an ultra-low 10mW from Maxim Integrated, now part of Analog Devices. This SPI-configurable ADC sample rates up to 64ksps allow precision DC and AC measurements, with integral non-linearity guaranteed to 4ppm maximum. The MAX11270 offers a 6.5nV/√Hz noise programmable gain amplifier with gain settings between 1x to 128x. Optional buffers are also included to isolate the signal inputs from the switched capacitor sampling network, which allows the MAX11270 to be used with high-impedance sources without compromising the available dynamic range.

[Learn More]