TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141593 times)
  2. FAT32 Library (74563 times)
  3. Network Ethernet Library (59075 times)
  4. USB Device Library (49114 times)
  5. Network WiFi Library (44857 times)
  6. FT800 Library (44417 times)
  7. GSM click (31085 times)
  8. mikroSDK (29961 times)
  9. microSD click (27522 times)
  10. PID Library (27498 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Oximeter2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Biometrics

Downloaded: 583 times

Not followed.

License: MIT license  

Oximeter 2 Click is a compact add-on board perfectly suited for measuring the blood oxygen saturation.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Oximeter2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Oximeter2 Click" changes.

Do you want to report abuse regarding "Oximeter2 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Oximeter 2 Click

Oximeter 2 Click is a compact add-on board suitable for measuring blood oxygen saturation.

oximeter2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2020.
  • Type : I2C type

Software Support

We provide a library for the Oximeter2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Oximeter2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void oximeter2_cfg_setup ( oximeter2_cfg_t *cfg );

  • Initialization function.

    OXIMETER2_RETVAL oximeter2_init ( oximeter2_t ctx, oximeter2_cfg_t cfg );

Example key functions :

  • Generic read function.

    uint8_t oximeter2_generic_read ( oximeter2_t *ctx, uint8_t reg );

  • Gets state of the int pin

    uint8_t oximeter2_get_int_status ( oximeter2_t *ctx );

  • Generic function for reading als and proximity values

    uint16_t oximeter3_read_value ( oximeter3_t *ctx, uint8_t type_macro );

Examples Description

This application collects data from the sensor, calculates it and then logs the result.

The demo application is composed of two sections :

Application Init

Initializes driver and performs the device configuration which puts Time Slot A and Time Slot B modes to active state. Before the device configuration, the SW reset will be performed, which puts the registers in their initial state.


void application_init ( void )
{
    log_cfg_t log_cfg;
    oximeter2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    oximeter2_cfg_setup( &cfg );
    OXIMETER2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    oximeter2_init( &oximeter2, &cfg );
    oximeter2_default_cfg( &oximeter2 );
}

Application Task

Application measures value of oxygen level in blood of a human.


void oximeter2_write_res ( uint32_t data_write )
{
    log_printf( &logger, "%u\r\n", data_write );
}

void oximeter2_logs_results( void )
{
    uint8_t final_result;

    oximeter2_read_data( &oximeter2, &res_slot[ 0 ] );

    log_printf( &logger, "Average result per photodiode is: \r\n" );

    switch ( oximeter2.enabled_channel )
    {
        case OXIMETER2_CH3_CH4_SELECTED:
        {
            log_printf( &logger, "PD3: " );
            oximeter2_write_res( res_slot[ 2 ] );
            log_printf( &logger, "PD4: " );
            oximeter2_write_res( res_slot[ 3 ] );

            final_result = ( res_slot[ 2 ] + res_slot[ 3 ] ) / 1000;
            break;
        }
        case OXIMETER2_ALL_CHANNELS_SELECTED:
        {
            log_printf( &logger, "PD1: " );
            oximeter2_write_res( res_slot[ 0 ] );
            log_printf( &logger, "PD2: " );
            oximeter2_write_res( res_slot[ 1 ] );
            log_printf( &logger, "PD3: " );
            oximeter2_write_res( res_slot[ 2 ] );
            log_printf( &logger, "PD4: " );
            oximeter2_write_res( res_slot[ 3 ]);

            final_result = ( res_slot[ 0 ] + res_slot [ 1 ] + res_slot[ 2 ] + res_slot[ 3 ] ) / 1000;
            break;
        }
        default:
        {
            break;
        }
    }

    if (final_result > 100)
    {
        final_result = 100;
    }
    log_printf( &logger, "Average result, in percentage: %u\r\n", ( uint16_t )final_result );
    log_printf( &logger, "-------------------------\r\n" );

    Delay_ms ( 300 );
}

void application_task ( void )
{
    oximeter2_logs_results();
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Oximeter2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LSM6DSL click

7

LSM6DSL click measures linear and angular velocity with six degrees of freedom. It carries the LSM6DSL high-performance 3-axis digital accelerometer and 3-axis digital gyroscope. The click is designed to run on a 3.3V power supply.

[Learn More]

Color 9 click

5

Color 9 Click is a very accurate color sensing Click board which features the APDS-9250, IR and ambient light sensor, from Broadcom. It contains a specially designed matrix of photosensitive elements, which can sense red, green, blue and IR component.

[Learn More]

IrDA 4 Click

0

IrDA 4 Click is a compact add-on board that provides a cost-effective solution for sending and receiving IR serial data. This board features the TFBS4650, an infrared transceiver from Vishay Semiconductors. The transceiver includes a PIN photodiode, an infrared emitter, and a low-power integral circuit and complies with the IrDA physical layer specification.

[Learn More]