We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.15
mikroSDK Library: 2.0.0.0
Category: Biometrics
Downloaded: 373 times
Not followed.
License: MIT license
Oximeter 2 Click is a compact add-on board perfectly suited for measuring the blood oxygen saturation.
Do you want to subscribe in order to receive notifications regarding "Oximeter2 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Oximeter2 Click" changes.
Do you want to report abuse regarding "Oximeter2 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4285_oximeter2_click.zip [399.07KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Oximeter 2 Click is a compact add-on board suitable for measuring blood oxygen saturation.
We provide a library for the Oximeter2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for Oximeter2 Click driver.
Config Object Initialization function.
void oximeter2_cfg_setup ( oximeter2_cfg_t *cfg );
Initialization function.
OXIMETER2_RETVAL oximeter2_init ( oximeter2_t ctx, oximeter2_cfg_t cfg );
Generic read function.
uint8_t oximeter2_generic_read ( oximeter2_t *ctx, uint8_t reg );
Gets state of the int pin
uint8_t oximeter2_get_int_status ( oximeter2_t *ctx );
Generic function for reading als and proximity values
uint16_t oximeter3_read_value ( oximeter3_t *ctx, uint8_t type_macro );
This application collects data from the sensor, calculates it and then logs the result.
The demo application is composed of two sections :
Initializes driver and performs the device configuration which puts Time Slot A and Time Slot B modes to active state. Before the device configuration, the SW reset will be performed, which puts the registers in their initial state.
void application_init ( void )
{
log_cfg_t log_cfg;
oximeter2_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
oximeter2_cfg_setup( &cfg );
OXIMETER2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
oximeter2_init( &oximeter2, &cfg );
oximeter2_default_cfg( &oximeter2 );
}
Application measures value of oxygen level in blood of a human.
void oximeter2_write_res ( uint32_t data_write )
{
log_printf( &logger, "%u\r\n", data_write );
}
void oximeter2_logs_results( void )
{
uint8_t final_result;
oximeter2_read_data( &oximeter2, &res_slot[ 0 ] );
log_printf( &logger, "Average result per photodiode is: \r\n" );
switch ( oximeter2.enabled_channel )
{
case OXIMETER2_CH3_CH4_SELECTED:
{
log_printf( &logger, "PD3: " );
oximeter2_write_res( res_slot[ 2 ] );
log_printf( &logger, "PD4: " );
oximeter2_write_res( res_slot[ 3 ] );
final_result = ( res_slot[ 2 ] + res_slot[ 3 ] ) / 1000;
break;
}
case OXIMETER2_ALL_CHANNELS_SELECTED:
{
log_printf( &logger, "PD1: " );
oximeter2_write_res( res_slot[ 0 ] );
log_printf( &logger, "PD2: " );
oximeter2_write_res( res_slot[ 1 ] );
log_printf( &logger, "PD3: " );
oximeter2_write_res( res_slot[ 2 ] );
log_printf( &logger, "PD4: " );
oximeter2_write_res( res_slot[ 3 ]);
final_result = ( res_slot[ 0 ] + res_slot [ 1 ] + res_slot[ 2 ] + res_slot[ 3 ] ) / 1000;
break;
}
default:
{
break;
}
}
if (final_result > 100)
{
final_result = 100;
}
log_printf( &logger, "Average result, in percentage: %u\r\n", ( uint16_t )final_result );
log_printf( &logger, "-------------------------\r\n" );
Delay_ms ( 300 );
}
void application_task ( void )
{
oximeter2_logs_results();
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.