TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140555 times)
  2. FAT32 Library (73048 times)
  3. Network Ethernet Library (58051 times)
  4. USB Device Library (48224 times)
  5. Network WiFi Library (43833 times)
  6. FT800 Library (43298 times)
  7. GSM click (30360 times)
  8. mikroSDK (28994 times)
  9. PID Library (27119 times)
  10. microSD click (26723 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Adapter Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.21

mikroSDK Library: 2.0.0.0

Category: Adapter

Downloaded: 286 times

Not followed.

License: MIT license  

Adapter Click™ is a breakout board which simplifies connection of add-on boards with IDC10 headers to mikroBUS™ socket. There are two ways of establishing connection: using male or female IDC10 connectors.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Adapter Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Adapter Click" changes.

Do you want to report abuse regarding "Adapter Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Adapter Click

Adapter Click™ is a breakout board which simplifies connection of add-on boards with IDC10 headers to mikroBUS™ socket. There are two ways of establishing connection: using male or female IDC10 connectors.

adapter_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : maj 2020.
  • Type : I2C/SPI type

Software Support

We provide a library for the Adapter Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Adapter Click driver.

Standard key functions :

  • Config Object Initialization function.

    void adapter_cfg_setup ( adapter_cfg_t *cfg );

  • Initialization function.

    ADAPTER_RETVAL adapter_init ( adapter_t ctx, adapter_cfg_t cfg );

Example key functions :

  • This function writes data to the desired register.

    void adapter_generic_write ( adapter_t ctx, uint8_t reg, uint8_t data_buf, uint8_t len );

  • This function reads data from the desired register.

    void adapter_generic_read ( adapter_t ctx, uint8_t reg, uint8_t data_buf, uint8_t len );

Examples Description

Adapter Click is a breakout board which simplifies connection of add-on boards. There are two ways of establishing connection: using male or female IDC10 connectors. Male header must be soldered on the top side of Adapter Click to connect the add-on board directly or via flat cable. Female header can be soldered either on the top, or the bottom side, depending on which one is more convenient in given circumstances.
There are two jumpers for SPI/I2C selection and one for selection of power supply range.

The demo application is composed of two sections :

Application Init

Initalizes I2C or SPI driver and makes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    adapter_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    adapter_cfg_setup( &cfg );
    ADAPTER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    adapter_init( &adapter, &cfg );
}

Application Task

This is an example that shows the use of the Adapter Click board (SPI mode - set as default). In I2C mode we are reading internal temperature from another device (THERMO 5 Click board). In SPI mode example we are writing "mikroElektronika" on SRAM Click board, and than reading from the same memory location.


void application_task ( void )
{
    float temp_value;

    if ( adapter.master_sel == ADAPTER_MASTER_SPI )
    {
        log_printf( &logger, " Writing text :\r\n" );

        for ( n_cnt = 0; n_cnt < 16; n_cnt++ )
        {
            sram_write_byte( &adapter, n_cnt, send_buffer[ n_cnt ] );
            Delay_ms ( 100 );
            log_printf( &logger, "%c", send_buffer[ n_cnt ] );
        }


        log_printf( &logger, "\r\n" );
        log_printf( &logger, " Read text :\r\n" );
        for ( n_cnt = 0; n_cnt < 16; n_cnt++ )
        {
            mem_data[ n_cnt ] = sram_read_byte( &adapter, n_cnt );
            Delay_ms ( 100 );
            log_printf( &logger, "%c", mem_data[ n_cnt ] );
        }   
        log_printf( &logger, "\r\n" );
        log_printf( &logger, "--------------------------\r\n" );

        Delay_ms ( 1000 );
    }
    else if ( adapter.master_sel == ADAPTER_MASTER_I2C )
    {
        temp_value = thermo5_read_inter_temp( &adapter );

        log_printf( &logger, " Thermo 5 internal temperature :  %.2f\r\n", temp_value );
        log_printf( &logger, "--------------------------\r\n" );

        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Adapter

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Pressure 10 Click

0

Pressure 10 Click features a digital interface barometric pressure sensor, based on piezoresistive bridge, labeled as HSPPAD042A, from ALPS Electric. It can use both SPI and I2C communication protocols, allowing it to be interfaced with a broad range of MCUs. Besides the pressure readings, this Click board™ also offers very accurate temperature reading, which is required for the pressure readings compensation and can be used in a wide range of battery-powered and portable applications thanks to its very low power consumption.

[Learn More]

DIGI Isolator Click

0

DIGI Isolator Click is a compact add-on board that provides electrical isolation and signal conditioning for the serial peripheral interface and a UART interface. This board features two DCL540C01, high-speed, quad-channel digital isolators from Toshiba Semiconductor. Depending on the usage, this CMOS isolator can achieve data rates of up to 150Mbps, while withstanding up to 5kVrms voltage. DIGI Isolator Click is designed to isolate two additional IO pins besides SPI and UART interfaces.

[Learn More]

Brushless 2 click

0

Brushless 2 click carries the DRV10964 BLDC motor controller with an integrated output stage. The click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over the following pins on the mikroBUSâ„¢ line: RST, CS, PWM, INT.

[Learn More]