TOP Contributors

  1. MIKROE (2656 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136809 times)
  2. FAT32 Library (69983 times)
  3. Network Ethernet Library (55951 times)
  4. USB Device Library (46274 times)
  5. Network WiFi Library (41892 times)
  6. FT800 Library (41194 times)
  7. GSM click (28990 times)
  8. PID Library (26420 times)
  9. mikroSDK (26376 times)
  10. microSD click (25383 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

BATT-MAN click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: Buck-Boost

Downloaded: 61 times

Not followed.

License: MIT license  

BATT-MAN click is a very versatile battery operated power manager. When powered via mikroBUS™, it will charge the connected Li-Ion/Li-Po 3.7V battery, while providing the output voltage on all its outputs at the same time. The interesting feature of this device is that it can provide additional current to the connected load if the current provided from the mikroBUS™ socket is not enough.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "BATT-MAN click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "BATT-MAN click" changes.

Do you want to report abuse regarding "BATT-MAN click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


BATT-MAN click

BATT-MAN click is a very versatile battery operated power manager. When powered via mikroBUS™, it will charge the connected Li-Ion/Li-Po 3.7V battery, while providing the output voltage on all its outputs at the same time. The interesting feature of this device is that it can provide additional current to the connected load if the current provided from the mikroBUS™ socket is not enough.

battman_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : sep 2020.
  • Type : GPIO type

Software Support

We provide a library for the BattMan Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for BattMan Click driver.

Standard key functions :

  • Config Object Initialization function.

    void battman_cfg_setup ( battman_cfg_t *cfg );

  • Initialization function.

    BATTMAN_RETVAL battman_init ( battman_t ctx, battman_cfg_t cfg );

Example key functions :

  • Controls the operation of the click.

    void battman_set_enable ( battman_t *ctx, uint8_t state );

  • Charging indicator status.

    uint8_t battman_get_charging_indicator ( battman_t *ctx );

Examples Description

BATT-MAN click is a very versatile battery operated power manager. When powered via mikroBUS, it will charge the connected Li-Ion/Li-Po 3.7V battery, while providing the output voltage on all its outputs at the same time.

The demo application is composed of two sections :

Application Init

Initializes the click driver and logger utility and enables the click board.


void application_init ( void )
{
    log_cfg_t log_cfg;
    battman_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    battman_cfg_setup( &cfg );
    BATTMAN_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    battman_init( &battman, &cfg );

    battman_set_enable( &battman, 1 );
    log_printf( &logger, "BATT-MAN click enabled.\r\n" );
    chg_flag = 0;
}

Application Task

Checks the charging indicator status, and in relation to its state it displays an appropriate message on USB UART.


void application_task ( void )
{
    if ( !battman_get_charging_indicator ( &battman ) )
    {
        if ( chg_flag == 1 )
        {
            log_printf( &logger, "Charging enabled.\r\n" );
        }
        chg_flag = 0;
    }
    else
    {
        if ( chg_flag == 0 )
        {
            log_printf( &logger, "Charging disabled.\r\n" );
        }
        chg_flag = 1;
    }
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.BattMan

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

BIG 7-SEG R click

0

BIG 7-SEG R click is what you need if you want to add a seven-segment LED display to your project. This click features an SC10-21SRWA 7-segment display. Communication between the MCU and the SC10-21SRWA display is established via serial-IN, parallel-OUT shift register 74HC595 IC.

[Learn More]

ccRF 2 click

0

ccRF2 click carries CC1120, the fully integrated, high-performance single-chip radio transceiver with extremely low power consumption.

[Learn More]

6DOF IMU 4 click

5

6DOF IMU 4 Click is an advanced 6-axis motion tracking Click board, which utilizes the ICM-20602, a high-performance integrated motion sensor, equipped with a 3-axis gyroscope, and a 3-axis accelerometer.

[Learn More]