TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141515 times)
  2. FAT32 Library (74401 times)
  3. Network Ethernet Library (58914 times)
  4. USB Device Library (48964 times)
  5. Network WiFi Library (44727 times)
  6. FT800 Library (44293 times)
  7. GSM click (31003 times)
  8. mikroSDK (29861 times)
  9. PID Library (27432 times)
  10. microSD click (27410 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DC Motor 8 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 353 times

Not followed.

License: MIT license  

DC Motor 8 Click is a DC motor driver. It can drive simple DC motors with brushes, providing them with a significant amount of current and voltage up to 40V. The Click has one control input, that uses the PWM signal from the host MCU. It uses the half-bridge topology to regulate the speed of the motor rotation, employs advanced dead-time circuitry that monitors the output stage, providing maximum switching efficiency and features an advanced technique to avoid shoot-through currents.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DC Motor 8 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DC Motor 8 Click" changes.

Do you want to report abuse regarding "DC Motor 8 Click".

  • Example 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


DC Motor 8 Click

DC Motor 8 Click is a DC motor driver. It can drive simple DC motors with brushes, providing them with a significant amount of current and voltage up to 40V. The Click has one control input, that uses the PWM signal from the host MCU. It uses the half-bridge topology to regulate the speed of the motor rotation, employs advanced dead-time circuitry that monitors the output stage, providing maximum switching efficiency and features an advanced technique to avoid shoot-through currents.

dcmotor8_click.png

Click Product page


Click library

  • Author : Nikola Peric
  • Date : Feb 2022.
  • Type : PWM type

Software Support

We provide a library for the DcMotor8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for DcMotor8 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void dcmotor8_cfg_setup ( dcmotor8_cfg_t *cfg );

  • Initialization function.

    DCMOTOR8_RETVAL dcmotor8_init ( dcmotor8_t ctx, dcmotor8_cfg_t cfg );

Example key functions :

  • This function sets the PWM duty cycle.

    void dcmotor8_set_duty_cycle ( dcmotor8_t *ctx, float duty_cycle );

  • This function starts PWM module.

    void dcmotor8_pwm_start ( dcmotor8_t *ctx );

  • This function stops PWM module.

    void dcmotor8_pwm_stop ( dcmotor8_t *ctx );

Examples Description

This Click can drive simple DC motors with brushes, providing them with a significant amount of current and voltage up to 40V. The Click has one control input, that uses the PWM signal from the host MCU. It uses the half-bridge topology to regulate the speed of the motor rotation, employs advanced dead-time circuitry that monitors the output stage, providing maximum switching efficiency and features an advanced technique to avoid shoot-through currents.

The demo application is composed of two sections :

Application Init

Initializes the driver and enables the Click board.


void application_init ( void )
{
    log_cfg_t log_cfg;
    dcmotor8_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    dcmotor8_cfg_setup( &cfg );
    DCMOTOR8_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    dcmotor8_init( &dcmotor8, &cfg );

    dcmotor8_set_duty_cycle ( &dcmotor8, 0.0 );
    dcmotor8_enable ( &dcmotor8, DCMOTOR8_ENABLE );
    dcmotor8_pwm_start( &dcmotor8 );
    log_info( &logger, "---- Application Task ----" );
    Delay_ms ( 500 );
}

Application Task

This is an example that demonstrates the use of DC Motor 8 Click board by increasing and decreasing the motor speed. DC Motor 8 Click communicates with the register via the PWM interface. Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void )
{
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    dcmotor8_set_duty_cycle ( &dcmotor8, duty );
    log_printf( &logger, "Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );
    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DcMotor8

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Environment 3 Click

0

Environment 3 Click is a compact add-on board that contains a four-in-one environmental measurement solution. This board features BME688, a first gas sensor with Artificial Intelligence (AI), and integrated high-linearity/high-accuracy pressure, humidity, and temperature sensors from Bosch Sensortech. The BME688 can detect Volatile Organic Compounds (VOCs), Volatile Sulfur Compounds (VSCs), and other gases such as carbon monoxide and hydrogen in part per billion (ppb) range. It provides absolute temperature accuracy, typical of ±1°C, and best performance when operated within the pressure, temperature, and humidity range of 300-110hPa, 0-65°C, and 10-90%RH.

[Learn More]

Current Limit 5 Click

0

Current Limit 5 Click is a compact add-on board representing a current-limiting solution. This board features the MIC2099, a current-limit power distribution switch from Microchip Technology. This Click board™ represents a programmable current limit solution with various protection features and fault indication, which operates from a 2.5V to 5.5V input voltage range. Also, the current limit is adjustable from 100mA up to 1.05A programmed through the MCP4561 digital potentiometer. This Click board™ is suitable for applications in portable equipment and condition monitoring or power supplies, protecting them in short circuits or other overload conditions.

[Learn More]

Diff Pressure click

8

Diff pressure is a mikroBUS add-on board carrying an NXP MPXV5010DP signal conditioned, temperature compensated and calibrated pressure sensor with two axial ports to accommodate industrial grade tubing. It is designed for comparing two pressure measurements.

[Learn More]