TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141243 times)
  2. FAT32 Library (74082 times)
  3. Network Ethernet Library (58702 times)
  4. USB Device Library (48814 times)
  5. Network WiFi Library (44521 times)
  6. FT800 Library (44072 times)
  7. GSM click (30802 times)
  8. mikroSDK (29646 times)
  9. PID Library (27353 times)
  10. microSD click (27250 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LightRanger 8 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.12

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 347 times

Not followed.

License: MIT license  

LightRanger 8 Click is a compact add-on board that contains a ranging sensor with multi-target detection. This board features the VL53L3CX, the latest Time-of-Flight (ToF) product that embeds third-generation FlightSense patented technology from STMicroelectronics.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LightRanger 8 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LightRanger 8 Click" changes.

Do you want to report abuse regarding "LightRanger 8 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


LightRanger 8 Click

LightRanger 8 Click is a compact add-on board that contains a ranging sensor with multi-target detection. This board features the VL53L3CX, the latest Time-of-Flight (ToF) product that embeds third-generation FlightSense patented technology from STMicroelectronics.

lightranger8_click.png

Click Product page


Click library

  • Author : Stefan Nikolic
  • Date : jan 2021.
  • Type : I2C type

Software Support

We provide a library for the LightRanger8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Library Description

This library contains API for LightRanger8 Click driver.

Standard key functions :

  • lightranger8_cfg_setup Config Object Initialization function.

    void lightranger8_cfg_setup ( lightranger8_cfg_t *cfg );
  • lightranger8_init Initialization function.

    err_t lightranger8_init ( lightranger8_t *ctx, lightranger8_cfg_t *cfg );
  • lightranger8_default_cfg Click Default Configuration function.

    err_t lightranger8_default_cfg ( lightranger8_t *ctx );

Example key functions :

  • lightranger8_set_measurement_timing_budget This function sets the timing budget of the VL53Lx ranging sensor.

    err_t lightranger8_set_measurement_timing_budget ( lightranger8_t *ctx, uint32_t budget_us );
  • lightranger8_start_measurement This function enables the range measuring with the adjusted intermeasurement period.

    void lightranger8_start_measurement ( lightranger8_t *ctx, uint32_t period_ms );
  • lightranger8_get_distance This function returns the corrected measured distance from the VL53Lx ranging sensor described in milimeters.

    uint16_t lightranger8_get_distance ( lightranger8_t *ctx );

Example Description

This demo application shows an example of distance measurement via VL53L3 ranging sensor.

The demo application is composed of two sections :

Application Init

Initialization of I2C module, log UART and additional pins. After driver init, the app powers the device and performs default settings of the ranging sensor including distance mode and timing budget. The optional calibration helps improvement of the accuracy on the targeted distance. This process takes 10 second ( which can by modifed by simply lowering the Delay_ms ( ) value ) so the user can place an object on the exact location. When calibration is finished, device starts the measurement with intermeasurement period set by the user.


void application_init ( void ) {
    log_cfg_t log_cfg;                           /**< Logger config object. */
    lightranger8_cfg_t lightranger8_cfg;         /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    lightranger8_cfg_setup( &lightranger8_cfg );
    LIGHTRANGER8_MAP_MIKROBUS( lightranger8_cfg, MIKROBUS_1 );
    err_t init_flag = lightranger8_init( &lightranger8, &lightranger8_cfg );
    if ( init_flag == I2C_MASTER_ERROR ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    lightranger8_power_on( &lightranger8 );
    log_printf( &logger, " Wait until the configuration of the chip is completed...\r\n" );
    if ( lightranger8_default_cfg( &lightranger8 ) != 0 ) {
        log_error( &logger, " Sensor config error. " );
        for ( ; ; );
    }
    lightranger8_set_distance_mode( &lightranger8, LIGHTRANGER8_DISTANCE_MODE_MEDIUM );
    lightranger8_set_measurement_timing_budget( &lightranger8, budget_us );
    Delay_ms ( 1000 );

    log_printf( &logger, " -------------------------------------------------------------------------\r\n" );
    log_printf( &logger, " For calibration place an object at %.1f cm distance from sensor.\r\n", ( float )calibration_distance_mm / 10 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf( &logger, " -------------------------------------------------------------------------\r\n" );
    log_printf( &logger, " ---------------    Sensor calibration is in progress...     ---------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    lightranger8_calibrate_offset( &lightranger8, calibration_distance_mm, period_ms, &offset );
    Delay_ms ( 500 );

    lightranger8_start_measurement( &lightranger8, period_ms );
    log_printf( &logger, " -------------------------------------------------------------------------\r\n" );
    log_printf( &logger, " -------------    Sensor measurement commencing...    -------------\r\n" );
    Delay_ms ( 100 );
}

Application Task

A new data ready is checked as soon as possible which signals the time required for the ranging sensor to perform the measurement. An acqured distance is shown on the LOG with the 2 seconds delay so the terminal is possible to read.


void application_task ( void ) {
    uint16_t distance;

    while ( lightranger8_get_interrupt_state( &lightranger8 ) != 0 ) {
        Delay_1ms();
    }

    distance = lightranger8_get_distance( &lightranger8 );
    log_printf( &logger, " ----------------------\r\n" );
    log_printf( &logger, " Distance: %.1f cm \r\n", ( float )distance / 10 );
    lightranger8_system_interrupt_clear ( &lightranger8 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LightRanger8

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all Mikroelektronika compilers.


ALSO FROM THIS AUTHOR

TempHum 21 Click

0

Temp&Hum 21 Click is a compact add-on board representing temperature and humidity sensing solution. This board features the HIH8130-021-001, a highly accurate, fully-calibrated digital humidity and temperature sensor from Honeywell Sensing and Productivity Solutions. This sensor, characterized by its high accuracy (±2% RH and ±0.5°C over a wide operating temperature range) and high resolution, provides factory-calibrated 14-bit data to the host controller with a configurable I2C interface. It also comes with alarm features with selectable alarm thresholds by an MCU or externally.

[Learn More]

DAC 9 click

5

DAC 9 Click is a compact add-on board that contains a fully-featured, highly accurate digital-to-analog converter. This board features the DAC80501, a 16-bit voltage-output digital-to-analog converter with precision internal reference from Texas Instruments. It supports both I2C and SPI serial interface and offers a linearity of &lt; 1 LSB.

[Learn More]

GainAMP 3 Click

0

GainAMP 3 Click is a compact add-on board that contains a 4-channel programmable gain amplifier. This board features the ADA4254, a zero drift, high voltage, programmable gain instrumentation amplifier from Analog Devices. It features 12 binary weighted gains and three scaling gain options resulting in 36 possible gain settings. It comes with an input multiplexer providing ±60V protection to the high impedance inputs of the amplifier and an excitation current source output available to bias sensors such as resistance temperature detectors (RTDs).

[Learn More]