We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.17
mikroSDK Library: 2.0.0.0
Category: Motion
Downloaded: 222 times
Not followed.
License: MIT license
6DOF IMU 12 Click carries the ultra-low-power BMI270 from Bosch Sensortec, inertial measurement unit optimized for wearables providing precise acceleration, angular rate measurement and intelligent on-chip motion-triggered interrupt features.
Do you want to subscribe in order to receive notifications regarding "6DOF IMU 12 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "6DOF IMU 12 Click" changes.
Do you want to report abuse regarding "6DOF IMU 12 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4330_6dof_imu_12_clic.zip [670.23KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for dsPIC XC16 |
|
6DOF IMU 12 Click carries the ultra-low-power BMI270 from Bosch Sensortec, inertial measurement unit optimized for wearables providing precise acceleration, angular rate measurement and intelligent on-chip motion-triggered interrupt features.
We provide a library for the C6DofImu12 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for C6DofImu12 Click driver.
Config Object Initialization function.
void c6dofimu12_cfg_setup ( c6dofimu12_cfg_t *cfg );
Initialization function.
C6DOFIMU12_RETVAL c6dofimu12_init ( c6dofimu12_t ctx, c6dofimu12_cfg_t cfg );
Click Default Configuration function.
void c6dofimu12_default_cfg ( c6dofimu12_t *ctx );
Function check status initialization of the device of BMI270 6-axis, smart, low-power Inertial Measurement on 6DOF IMU 12 Click board.
C6DOFIMU12_RETVAL c6dofimu12_check_id ( c6dofimu12_t *ctx );
Function check status initialization of the device of BMI270 6-axis, smart, low-power Inertial Measurement on 6DOF IMU 12 Click board.
C6DOFIMU12_RETVAL c6dofimu12_check_init_status ( c6dofimu12_t *ctx );
Function reads Accel and Gyro 16-bit ( signed ) X-axis, Y-axis data and Z-axis data from the 12 targeted starts from C6DOFIMU12_REG_ACC_X_LSB_ADDR register address of BMI270 6-axis, smart, low-power Inertial Measurement on 6DOF IMU 12 Click board.
void c6dofimu12_get_data ( c6dofimu12_t ctx, c6dofimu12_accel_t accel_data, c6dofimu12_gyro_t *gyro_data );
This example demonstrates the use of 6DOF IMU 12 Click board.
The demo application is composed of two sections :
Initializes the driver and checks the communication then initializes the device and sets the device default configuration.
void application_init ( void )
{
uint8_t tx_buf;
log_cfg_t log_cfg;
c6dofimu12_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
c6dofimu12_cfg_setup( &cfg );
C6DOFIMU12_MAP_MIKROBUS( cfg, MIKROBUS_1 );
c6dofimu12_init( &c6dofimu12, &cfg );
Delay_ms ( 100 );
log_printf( &logger, " Driver init done \r\n" );
log_printf( &logger, "----------------------------------\r\n");
if ( c6dofimu12_check_id( &c6dofimu12 ) == C6DOFIMU12_SUCCESS )
{
log_printf( &logger, " Communication OK\r\n" );
log_printf( &logger, "----------------------------------\r\n");
}
else
{
log_printf( &logger, " Communication ERROR\r\n" );
log_printf( &logger, " Reset the device\r\n" );
log_printf( &logger, "----------------------------------\r\n");
for ( ; ; );
}
tx_buf = C6DOFIMU12_PWR_CONF_ADV_PWR_SAVE_DISABLED |
C6DOFIMU12_FIFO_READ_DISABLED |
C6DOFIMU12_FAST_PWR_UP_DISABLED;
c6dofimu12_generic_write( &c6dofimu12, C6DOFIMU12_REG_PWR_CONF_ADDR, &tx_buf, 1 );
Delay_ms ( 100 );
tx_buf = C6DOFIMU12_CMD_INITIALIZATION_START;
c6dofimu12_generic_write( &c6dofimu12, C6DOFIMU12_REG_INIT_CTRL_ADDR, &tx_buf, 1 );
Delay_ms ( 100 );
c6dofimu12_generic_write( &c6dofimu12, C6DOFIMU12_REG_INIT_DATA_ADDR, bmi270_config_file, 8192 );
Delay_ms ( 100 );
tx_buf = C6DOFIMU12_CMD_INITIALIZATION_STOP;
c6dofimu12_generic_write( &c6dofimu12, C6DOFIMU12_REG_INIT_CTRL_ADDR, &tx_buf, 1 );
Delay_ms ( 100 );
if ( c6dofimu12_check_init_status( &c6dofimu12 ) == C6DOFIMU12_SUCCESS )
{
log_printf( &logger, " Initialization completed\r\n" );
log_printf( &logger, "----------------------------------\r\n");
}
else
{
log_printf( &logger, " Initialization ERROR\r\n" );
log_printf( &logger, " Reset the device\r\n" );
log_printf( &logger, "----------------------------------\r\n");
for( ; ; );
}
c6dofimu12_default_cfg( &c6dofimu12 );
Delay_ms ( 100 );
}
Measures acceleration and gyroscope data and displays the results on USB UART each second.
void application_task ( void )
{
c6dofimu12_get_data( &c6dofimu12, &c6dofimu12_accel, &c6dofimu12_gyro );
log_printf( &logger, " Accel X: %d | Gyro X: %d\r\n", c6dofimu12_accel.x, c6dofimu12_gyro.x );
log_printf( &logger, " Accel Y: %d | Gyro Y: %d\r\n", c6dofimu12_accel.y, c6dofimu12_gyro.y );
log_printf( &logger, " Accel Z: %d | Gyro Z: %d\r\n", c6dofimu12_accel.z, c6dofimu12_gyro.z );
log_printf( &logger, "----------------------------------\r\n");
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.