TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141292 times)
  2. FAT32 Library (74089 times)
  3. Network Ethernet Library (58715 times)
  4. USB Device Library (48826 times)
  5. Network WiFi Library (44525 times)
  6. FT800 Library (44074 times)
  7. GSM click (30805 times)
  8. mikroSDK (29659 times)
  9. PID Library (27355 times)
  10. microSD click (27251 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Air Quality 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: Gas

Downloaded: 288 times

Not followed.

License: MIT license  

Air quality 7 Click is a compact add-on board that combines state-of-the-art MOS sensor technology.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Air Quality 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Air Quality 7 Click" changes.

Do you want to report abuse regarding "Air Quality 7 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Air Quality 7 Click

Air quality 7 Click is a compact add-on board that combines state-of-the-art MOS sensor technology with intelligent detection algorithms to monitor VOCs and CO2 equivalent variations in confined spaces.

airquality7_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Aug 2020.
  • Type : I2C type

Software Support

We provide a library for the AirQuality7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for AirQuality7 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void airquality7_cfg_setup ( airquality7_cfg_t *cfg );

  • Initialization function.

    AIRQUALITY7_RETVAL airquality7_init ( airquality7_t ctx, airquality7_cfg_t cfg );

Example key functions :

  • Get Status function.

    airquality7_err_t airquality7_get_status( airquality7_t ctx, uint16_t tvoc_ppb, uint16_t co2_ppm, uint32_t res_val_ohm, uint8_t *err_byte );

  • Get Revision function.

    airquality7_err_t airquality7_get_revision( airquality7_t ctx, uint8_t year, uint8_t month, uint8_t day, uint8_t *ascii_code );

  • Get R0 Calibration function.

    airquality7_err_t airquality7_get_r0_calib( airquality7_t ctx, uint16_t r0_kohm );

Examples Description

This demo application measures air quality.

The demo application is composed of two sections :

Application Init

Initializes I2C driver and reads revision date of the module. If CRC check is OK allows the program to go on, otherwise, it displays a message that the program needs to be restarted.


void application_init ( void )
{
    log_cfg_t log_cfg;
    airquality7_cfg_t cfg;

    uint8_t airquality7_rev_year       = AIRQUALITY7_DUMMY;
    uint8_t airquality7_rev_month      = AIRQUALITY7_DUMMY;
    uint8_t airquality7_rev_day        = AIRQUALITY7_DUMMY;
    uint8_t airquality7_rev_ascii_code = AIRQUALITY7_DUMMY;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    airquality7_cfg_setup( &cfg );
    AIRQUALITY7_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    airquality7_init( &airquality7, &cfg );


    airquality7_tvoc_ppb    = AIRQUALITY7_DUMMY;
    airquality7_co2_ppm     = AIRQUALITY7_DUMMY;
    airquality7_res_val_ohm = AIRQUALITY7_DUMMY;

    airquality7_err_code = airquality7_get_revision( &airquality7, 
                                                     &airquality7_rev_year,
                                                     &airquality7_rev_month,
                                                     &airquality7_rev_day,
                                                     &airquality7_rev_ascii_code );

    if ( airquality7_err_code == AIRQUALITY7_ERR_OK )
    {
        log_printf( &logger, " Revision date: %.2u.%.2u.%.2u\r\n", ( uint16_t ) airquality7_rev_day, 
                                                                   ( uint16_t ) airquality7_rev_month,
                                                                   ( uint16_t ) airquality7_rev_year );
        log_printf( &logger, " ASCII code for a charter: %u \r\n", ( uint16_t ) airquality7_rev_ascii_code );
    }
    else
    {
        log_printf( &logger, "CRC ERROR READING REVISION. \r\n" );
        Delay_ms ( 1000 );

        for ( ; ; )
        {
            log_printf( &logger, "PLEASE, RESTART YOUR SYSTEM...\r\n" );
            Delay_ms ( 1000 );
            log_printf( &logger, " \r\n \r\n " );
            Delay_ms ( 1000 );
        }
    }

    log_printf( &logger, "----------------------------------------- \r\n" );
    Delay_ms ( 500 );
}

Application Task

Reads air quality status every 1500ms and shows the results on the USB UART.


void application_task ( void )
{
    airquality7_err_code = airquality7_get_status( &airquality7, 
                                                   &airquality7_tvoc_ppb, 
                                                   &airquality7_co2_ppm,
                                                   &airquality7_res_val_ohm, 
                                                   AIRQUALITY7_NULL );

    if ( airquality7_err_code == AIRQUALITY7_ERR_OK )
    {
        uint8_t cnt;

        log_printf( &logger, " tVOC [ppb] = %u \r\n", airquality7_tvoc_ppb );

        log_printf( &logger, " CO2 [ppm] = %u \r\n", airquality7_co2_ppm );

        log_printf( &logger, " Resistor value [ohm] = %lu \r\n", airquality7_res_val_ohm );
        log_printf( &logger, "----------------------------------------- \r\n" );
    }

    Delay_ms ( 1000 );
    Delay_ms ( 500 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.AirQuality7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

HVAC Click

0

HVAC Click is a compact add-on board that contains Sensirion’s next-generation miniature CO2 sensor. This board features the SCD41, a carbon dioxide sensor build on the photoacoustic sensing principle, and Sensirion’s patented PASens® and CMOSens® technology to offer high accuracy at a minor form factor.

[Learn More]

6DOF IMU Click

0

6DOF IMU Click carries ST’s LSM6DS33TR 6-axis inertial measurement unit comprising a 3-axis gyroscope and a 3-axis accelerometer. The chip is a highly accurate 6 DOF inertial measurement unit with long-term stable operation over a wide range of temperatures.

[Learn More]

LTE Cat.4 Click

0

LTE Cat.4 Click (for Europe) is a compact add-on board made specially for 4G M2M and IoT applications in Europe. This board features the EG95EXGA-128-SGNS, an IoT/M2M-optimized LTE Cat.4 module that meets the 3GPP Release 11 standard from Quectel. It supports multiple wireless standards, including LTE-FDD, WCDMA, and GSM, ensuring broad network compatibility. Key features include multi-band LTE support (B1/B3/B7/B8/B20/B28), RX diversity for bands B1 and B8, and multi-constellation GNSS (GPS, GLONASS, BeiDou/Compass, Galileo, QZSS). It also integrates a 16-bit mono audio codec for voice functionality with support for CTIA standard headphones. Additionally, it offers a USB Type C connector for power and data transfer, AT command communication, and firmware upgrades.

[Learn More]