TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140957 times)
  2. FAT32 Library (73512 times)
  3. Network Ethernet Library (58321 times)
  4. USB Device Library (48508 times)
  5. Network WiFi Library (44132 times)
  6. FT800 Library (43686 times)
  7. GSM click (30546 times)
  8. mikroSDK (29286 times)
  9. PID Library (27220 times)
  10. microSD click (26931 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Boost 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Boost

Downloaded: 231 times

Not followed.

License: MIT license  

Boost 3 Click is a compact add-on board that contains a boost converter with an integrated current mirror function. This board features the TPS61391, a 700-kHz pulse-width modulating (PWM) Step-Up converter with a 70V switch FET with an input voltage up to 5.5V from Texas Instruments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Boost 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Boost 3 Click" changes.

Do you want to report abuse regarding "Boost 3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

\mainpage Main Page


Boost 3 Click

Boost 3 Click is a compact add-on board that contains a boost converter with an integrated current mirror function. This board features the TPS61391, a 700-kHz pulse-width modulating (PWM) Step-Up converter with a 70V switch FET with an input voltage up to 5.5V from Texas Instruments.

boost3_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Sep 2020.
  • Type : GPIO type

Software Support

We provide a library for the Boost3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Boost3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void boost3_cfg_setup ( boost3_cfg_t *cfg );

  • Initialization function.

    BOOST3_RETVAL boost3_init ( boost3_t ctx, boost3_cfg_t cfg );

Example key functions :

  • Function is used to enable or disable the device.

    void boost3_dev_enable ( boost3_t *ctx, uint8_t state );

Examples Description

Boost 3 Click provides an adjustable output voltage through the onboard potentiometer. The chip is a 700-kHz pulse-width modulating (PWM) step-up converter with an 85-V switch FET with an input ranging from 2.5 V to 5.5 V.

The demo application is composed of two sections :

Application Init

Initializes GPIO and LOG structures, and set CS pin as output.


void application_init ( void )
{
    log_cfg_t log_cfg;
    boost3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    boost3_cfg_setup( &cfg );
    BOOST3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    boost3_init( &boost3, &cfg );
}

Application Task

Turns ON the device for 10 seconds and then turns it OFF for 3 seconds. It also displays appropriate messages on the USB UART.


void application_task ( void )
{
    boost3_dev_enable( &boost3, BOOST3_ENABLE );

    log_printf( &logger, "The Click board is enabled!\r\n" );
    log_printf( &logger, "Please use the on-board potentiometer" );
    log_printf( &logger, " to adjust the voltage output.\r\n" );
    log_printf( &logger, "--------------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    boost3_dev_enable( &boost3, BOOST3_DISABLE );
    log_printf( &logger, "The Click board is turned OFF!\r\n" );
    log_printf( &logger, "--------------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Boost3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

DAC 7 click

5

DAC 7 Click carries Texas Instruments AD5624R, a low-power four-channel, 12-bit buffered Digital-to-Analog Converter. AD5624R converts digital value to the corresponding voltage level using external voltage reference.

[Learn More]

USB HID Demo

0

The application demonstrates USB HID functionality.

[Learn More]

Boost-inv 2 Click

0

Boost-INV 2 Click is a very useful DC/DC voltage converter device, as can output both positive and negative voltage, boosted up to 15V and inverted to -15V, from a single fixed voltage input.

[Learn More]