TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141228 times)
  2. FAT32 Library (74037 times)
  3. Network Ethernet Library (58659 times)
  4. USB Device Library (48767 times)
  5. Network WiFi Library (44487 times)
  6. FT800 Library (44034 times)
  7. GSM click (30784 times)
  8. mikroSDK (29603 times)
  9. PID Library (27342 times)
  10. microSD click (27189 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Hall Current 19 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.4

mikroSDK Library: 2.0.0.0

Category: Current sensor

Downloaded: 93 times

Not followed.

License: MIT license  

Hall Current 19 Click is a compact add-on board designed for precise current sensing in various applications. This board features the CZ3AG2, a coreless current sensor from AKM Semiconductor. The CZ3AG2 offers high-accuracy and high-speed current sensing using Hall sensor technology, with features like stray magnetic field reduction and dual overcurrent detection.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Hall Current 19 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Hall Current 19 Click" changes.

Do you want to report abuse regarding "Hall Current 19 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Hall Current 19 Click

Hall Current 19 Click is a compact add-on board designed for precise current sensing in various applications. This board features the CZ3AG2, a coreless current sensor from AKM Semiconductor. The CZ3AG2 offers high-accuracy and high-speed current sensing using Hall sensor technology, with features like stray magnetic field reduction and dual overcurrent detection.

hallcurrent19_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Feb 2024.
  • Type : ADC type

Software Support

We provide a library for the Hall Current 19 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Hall Current 19 Click driver.

Standard key functions :

  • hallcurrent19_cfg_setup Config Object Initialization function.

    void hallcurrent19_cfg_setup ( hallcurrent19_cfg_t *cfg );
  • hallcurrent19_init Initialization function.

    err_t hallcurrent19_init ( hallcurrent19_t *ctx, hallcurrent19_cfg_t *cfg );

Example key functions :

  • hallcurrent19_get_oc2 This function is used to get state of the overcurrent 2 detection of the Hall Current 19 Click board.

    uint8_t hallcurrent19_get_oc2 ( hallcurrent19_t *ctx );
  • hallcurrent19_set_zero_ref This function sets the zero voltage reference of the Hall Current 19 Click board.

    err_t hallcurrent19_set_zero_ref ( hallcurrent19_t *ctx );
  • hallcurrent19_get_current This function reads and calculate input current value of the Hall Current 19 Click board.

    err_t hallcurrent19_get_current ( hallcurrent19_t *ctx, float *current );

Example Description

This example demonstrates the use of Hall Current 19 Click board by reading and displaying the current measurements.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger, and set the zero voltage reference.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    hallcurrent19_cfg_t hallcurrent19_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    hallcurrent19_cfg_setup( &hallcurrent19_cfg );
    HALLCURRENT19_MAP_MIKROBUS( hallcurrent19_cfg, MIKROBUS_1 );
    if ( ADC_ERROR == hallcurrent19_init( &hallcurrent19, &hallcurrent19_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_printf( &logger, " Turn off the load current in the following 5 sec.\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    if ( HALLCURRENT19_OK == hallcurrent19_set_zero_ref( &hallcurrent19 ) )
    {
        log_printf( &logger, " Process complete!\r\n");
    }
    else
    {
        log_error( &logger, " Zero reference." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

The demo application reads the current measurements [A] and displays the results. Results are being sent to the UART Terminal, where you can track their changes.


void application_task ( void ) 
{
    float voltage = 0;
    if ( HALLCURRENT19_OK == hallcurrent19_get_current ( &hallcurrent19, &voltage ) ) 
    {
        log_printf( &logger, " Current : %.3f[A]\r\n\n", voltage );
        Delay_ms ( 1000 );
    }
    if ( HALLCURRENT19_OCD_ACTIVE == hallcurrent19_get_oc1( &hallcurrent19 ) )
    {
        log_printf( &logger, " Current over 7A \r\n" );
    }
    if ( HALLCURRENT19_OCD_ACTIVE == hallcurrent19_get_oc2( &hallcurrent19 ) )
    {
        log_printf( &logger, " Current over 17.5A \r\n" );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HallCurrent19

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

USB-C Source click

5

USB-C Source Click is a compact add-on board that contains a standalone autonomous USB power delivery controller. This board features the STUSB4700, an independent USB power delivery controller optimized as a provider to negotiate a given amount of power to be sourced to an inquiring consumer device from STMicroelectronics.

[Learn More]

RS232 3 Click

0

RS232 3 Click is a compact add-on board representing a universal usable RS232 transceiver. This board features the SP3221E, a low-power RS232 transceiver from MaxLinear. The SP3221E uses an internal high-efficiency, charge-pump power supply and is compliant with EIA/TIA-232-F standards when powered by any of the mikroBUS™ power rails. The AUTO ON-LINE® feature allows the SP3221E to automatically Wake-Up from a Shutdown state when an RS232 cable is connected and a peripheral device is turned on. When not connected or not in use, the SP3221E will automatically shut down, drawing less supply current.

[Learn More]

Pressure 2 Click

0

Pressure 2 Click carries MS5803, a high resolution MEMS pressure sensor that is both precise and robust. Its measurement range is from 0 to 14 bars (with a resolution of up to 0.2 mbars), but because of the stainless steel cap enclosure, the sensor can withstand up to 30 bars of pressure. Pressure 2 Click communicates with the target board MCU either through mikroBUS SPI or I2C lines, depending on the position in which the onboard jumpers are soldered.

[Learn More]