TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (404 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141045 times)
  2. FAT32 Library (73573 times)
  3. Network Ethernet Library (58378 times)
  4. USB Device Library (48561 times)
  5. Network WiFi Library (44179 times)
  6. FT800 Library (43734 times)
  7. GSM click (30582 times)
  8. mikroSDK (29382 times)
  9. PID Library (27224 times)
  10. microSD click (26969 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 309 times

Not followed.

License: MIT license  

Brushless 7 Click is, as its name said, a motor driver based expansion board for controlling BLCD motors with any microcontroller.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 7 Click" changes.

Do you want to report abuse regarding "Brushless 7 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Brushless 7 Click

Brushless 7 Click is, as its name said, a motor driver based expansion board for controlling BLCD motors with any microcontroller.

brushless7_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jul 2020.
  • Type : I2C type

Software Support

We provide a library for the Brushless7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Brushless7 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void brushless7_cfg_setup ( brushless7_cfg_t *cfg );

  • Initialization function.

    BRUSHLESS7_RETVAL brushless7_init ( brushless7_t ctx, brushless7_cfg_t cfg );

  • Click Default Configuration function.

    void brushless7_default_cfg ( brushless7_t *ctx );

Example key functions :

  • Function for changeing duty of device

    uint8_t brushless7_change_duty ( brushless7_t *ctx, float duty_ptc );

  • Function for setting max rpm parameter of device

    uint8_t brushless7_max_speed_rpm ( brushless7_t *ctx, uint8_t max_speed_rpm );

  • Function for setting type of device control

    uint8_t brushless7_control_mode_set ( brushless7_t *ctx, uint8_t ctrl_type );

Examples Description

This example demonstrates the use of Brushless 7 Click board.

The demo application is composed of two sections :

Application Init

Sets the default configuration and then configures the Click board for the selected mode.


void application_init ( void )
{
    log_cfg_t log_cfg;
    brushless7_cfg_t cfg;
    uint8_t error_flag = 0;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    brushless7_cfg_setup( &cfg );
    BRUSHLESS7_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    brushless7_init( &brushless7, &cfg );
    Delay_ms ( 100 );

    brushless7_default_cfg( &brushless7 );
    Delay_ms ( 100 );

    demo_type_data = BRUSHLESS7_CTRL_TYPE_DUTY;

    if ( BRUSHLESS7_CTRL_TYPE_DUTY == demo_type_data )
    {
        error_flag |= brushless7_max_duty( &brushless7, 95.0 );
        error_flag |= brushless7_start_duty( &brushless7, 5.0 );
        error_flag |= brushless7_stop_duty( &brushless7, 2.0 );
        log_printf( &logger, " ----- DUTY CONTROL ----- \r\n" );
    }
    else if ( BRUSHLESS7_CTRL_TYPE_RPM == demo_type_data )
    {
        error_flag |= brushless7_max_speed_rpm( &brushless7, BRUSHLESS7_MAX_SPEED_4096 );
        log_printf( &logger, " ----- RPM CONTROL ----- \r\n" );
    }

    if ( BRUSHLESS7_DEV_ERROR == error_flag )
    {
        log_printf( &logger, " ----- ERROR ----- \r\n" );
        for( ; ; );
    }
}

Application Task

Increases and decreases the speed of the motor rotation by setting the duty cycle or rpm values depending on which mode is previously selected. It also switches the direction of rotation at the beginning of each cycle. All data is being logged on the USB UART where you can track their changes.


void application_task ( void )
{
    brushless7_control_mode_set( &brushless7, BRUSHLESS7_CTRL_TYPE_STOP );
    brushless7_toggle_dir_pin_state ( &brushless7 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    brushless7_control_mode_set( &brushless7, demo_type_data );
    if ( BRUSHLESS7_CTRL_TYPE_DUTY == demo_type_data )
    {
        log_printf( &logger, " The motor is accelerating...\r\n" );
        log_printf( &logger, "------------------------------\r\n" );
        brushless7_change_duty( &brushless7, 70.0 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );

        log_printf( &logger, " The motor is slowing down...\r\n" );
        log_printf( &logger, "------------------------------\r\n" );
        brushless7_change_duty( &brushless7, 8.0 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
    else if ( BRUSHLESS7_CTRL_TYPE_RPM == demo_type_data )
    {
        log_printf( &logger, " The motor is accelerating...\r\n" );
        log_printf( &logger, "------------------------------\r\n" );
        brushless7_start_rpm( &brushless7, 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );

        log_printf( &logger, " The motor is slowing down...\r\n" );
        log_printf( &logger, "------------------------------\r\n" );
        brushless7_start_rpm( &brushless7, 100 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

WiFi ESP click

2

WiFi ESP click carries the ESP-WROOM-02 module that integrates ESP8266EX. The click is designed to run on a 3.3V power supply. It communicates with the target microcontroller over UART interface and the following pins on the mikroBUS line: RST, CS.

[Learn More]

OSD click

0

This is a sample program which demonstrates the use of OSD click. Program shows the time and date in corners of the screen and enable you to set the time and date, using the OSD menu.

[Learn More]

BarGraph click - Cloud Demo

5

- The example contains all the necessary initializations and settings for a G2C click on a successful connection by Click Cloud. - BarGraph click (actuator) displays value of the counter that is settings on the Cloud. - This example demonstrate using the Actuator(counter) parser.

[Learn More]