TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139847 times)
  2. FAT32 Library (72210 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28440 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Compass 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Magnetic

Downloaded: 205 times

Not followed.

License: MIT license  

Compass 4 Click is a compact add-on board that can measure the three-axis magnetic field that is perfect for implementation in applications such as electric compasses.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Compass 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Compass 4 Click" changes.

Do you want to report abuse regarding "Compass 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Compass 4 Click

Compass 4 Click is a compact add-on board that can measure the three-axis magnetic field that is perfect for implementation in applications such as electric compasses.

compass4_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Sep 2020.
  • Type : I2C/SPI type

Software Support

We provide a library for the Compass4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Compass4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void compass4_cfg_setup ( compass4_cfg_t *cfg );

  • Initialization function.

    COMPASS4_RETVAL compass4_init ( compass4_t ctx, compass4_cfg_t cfg );

Example key functions :

  • Gets INT pin state (DRDY pin)

    uint8_t compass4_get_interrupt ( compass4_t *ctx );

  • Gets single axis value

    uint8_t compass4_get_single_axis ( compass4_t ctx, uint8_t axis_reg, int16_t axis_data );

  • Gets magnetic flux of X\Y\Z axis value

    uint8_t compass4_get_magnetic_flux ( compass4_t ctx, compass4_flux_t flux );

Examples Description

This demo application measures magnetic flux data.

The demo application is composed of two sections :

Application Init

Initializes the driver and resets the module, then checks the communication with the module and sets the module default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;
    compass4_cfg_t cfg;

    uint8_t device;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    compass4_cfg_setup( &cfg );
    COMPASS4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    compass4_init( &compass4, &cfg );

    compass4_hardware_reset( &compass4 );
    Delay_ms ( 500 );

    device = compass4_check_device( &compass4 );
    if ( device == 0 )
    {
        log_printf( &logger, ">> Device communication [ OK ] \r\n" );
    }
    else
    {
        log_printf( &logger, ">> Device communication [ ERROR ] \r\n" );
        for ( ; ; );
    }

    compass4_configuration ( &compass4, COMPASS4_CTRL1_WM_STEPS_5 | 
                                        COMPASS4_CTRL1_NOISE_ENABLE,
                                        COMPASS4_CTRL2_MODE_CONT_1 | 
                                        COMPASS4_CTRL2_SDR_LOW_NOISE |
                                        COMPASS4_CTRL2_FIFO_ENABLE );

    log_printf( &logger, ">> Start measurement  \r\n" );
}

Application Task

Reads magnetic flux data and displays the values of X, Y, and Z axis to the USB UART each second.


void application_task ( void )
{
    compass4_flux_t flux;
    uint8_t err;

    err = compass4_get_magnetic_flux( &compass4, &flux );
    if ( err != 0 )
    {
        log_printf( &logger, ">> Measurement error  \r\n" );
    }
    else
    {
        log_printf( &logger, ">> Magnetic flux data << \r\n" );
        log_printf( &logger, ">> X: %.2f \r\n", flux.x );
        log_printf( &logger, ">> Y: %.2f \r\n", flux.y );
        log_printf( &logger, ">> Z: %.2f \r\n", flux.z );
    }
    log_printf( &logger, "-----------------------------\r\n" );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Compass4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

CAN FD 3 click

5

CAN FD 3 Click is a add-on board based on TLE9251V CAN network transceiver, designed for HS CAN networks up to 5 Mbit/s in automotive and industrial applications.

[Learn More]

Single Cell Click

0

The Single Cell Click is a Click board™ which features MCP16251 synchronous boost regulator with true load disconnect and MCP1811A low-dropout (LDO) linear regulator that provide an ultra low quiescent current during device operation of about 250nA and can be shut down for 5nA (typical) supply current draw. Given the potential applications of these features, the Single Cell Click can be used for one, two and three-cell Alkaline and NiMH/NiCd portable products, solar cell applications, personal care and medical products, smartphones, MP3 players, wireless sensors and many more.

[Learn More]

Waveform 4 Click

0

Waveform 4 Click is a compact add-on board that represents a high-performance signal generator. This board features the AD9106, a quad-channel, 12-bit, 180MSPS waveform generator, integrating on-chip static random access memory (SRAM) and direct digital synthesis (DDS) for complex waveform generation from Analog Devices. The DDS is up to a 180 MHz master clock sinewave generator with a 24-bit tuning word allowing 10.8 Hz/LSB frequency resolution.

[Learn More]