TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141966 times)
  2. FAT32 Library (75189 times)
  3. Network Ethernet Library (59426 times)
  4. USB Device Library (49421 times)
  5. Network WiFi Library (45229 times)
  6. FT800 Library (44822 times)
  7. GSM click (31399 times)
  8. mikroSDK (30373 times)
  9. microSD click (27741 times)
  10. PID Library (27596 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Compass 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Magnetic

Downloaded: 398 times

Not followed.

License: MIT license  

Compass 4 Click is a compact add-on board that can measure the three-axis magnetic field that is perfect for implementation in applications such as electric compasses.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Compass 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Compass 4 Click" changes.

Do you want to report abuse regarding "Compass 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Compass 4 Click

Compass 4 Click is a compact add-on board that can measure the three-axis magnetic field that is perfect for implementation in applications such as electric compasses.

compass4_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Sep 2020.
  • Type : I2C/SPI type

Software Support

We provide a library for the Compass4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Compass4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void compass4_cfg_setup ( compass4_cfg_t *cfg );

  • Initialization function.

    COMPASS4_RETVAL compass4_init ( compass4_t ctx, compass4_cfg_t cfg );

Example key functions :

  • Gets INT pin state (DRDY pin)

    uint8_t compass4_get_interrupt ( compass4_t *ctx );

  • Gets single axis value

    uint8_t compass4_get_single_axis ( compass4_t ctx, uint8_t axis_reg, int16_t axis_data );

  • Gets magnetic flux of X\Y\Z axis value

    uint8_t compass4_get_magnetic_flux ( compass4_t ctx, compass4_flux_t flux );

Examples Description

This demo application measures magnetic flux data.

The demo application is composed of two sections :

Application Init

Initializes the driver and resets the module, then checks the communication with the module and sets the module default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;
    compass4_cfg_t cfg;

    uint8_t device;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    compass4_cfg_setup( &cfg );
    COMPASS4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    compass4_init( &compass4, &cfg );

    compass4_hardware_reset( &compass4 );
    Delay_ms ( 500 );

    device = compass4_check_device( &compass4 );
    if ( device == 0 )
    {
        log_printf( &logger, ">> Device communication [ OK ] \r\n" );
    }
    else
    {
        log_printf( &logger, ">> Device communication [ ERROR ] \r\n" );
        for ( ; ; );
    }

    compass4_configuration ( &compass4, COMPASS4_CTRL1_WM_STEPS_5 | 
                                        COMPASS4_CTRL1_NOISE_ENABLE,
                                        COMPASS4_CTRL2_MODE_CONT_1 | 
                                        COMPASS4_CTRL2_SDR_LOW_NOISE |
                                        COMPASS4_CTRL2_FIFO_ENABLE );

    log_printf( &logger, ">> Start measurement  \r\n" );
}

Application Task

Reads magnetic flux data and displays the values of X, Y, and Z axis to the USB UART each second.


void application_task ( void )
{
    compass4_flux_t flux;
    uint8_t err;

    err = compass4_get_magnetic_flux( &compass4, &flux );
    if ( err != 0 )
    {
        log_printf( &logger, ">> Measurement error  \r\n" );
    }
    else
    {
        log_printf( &logger, ">> Magnetic flux data << \r\n" );
        log_printf( &logger, ">> X: %.2f \r\n", flux.x );
        log_printf( &logger, ">> Y: %.2f \r\n", flux.y );
        log_printf( &logger, ">> Z: %.2f \r\n", flux.z );
    }
    log_printf( &logger, "-----------------------------\r\n" );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Compass4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

6DOF IMU 8 click

5

6DOF IMU 8 click is an advanced 6-axis motion tracking Click board, which utilizes the ISM330DLC, a high-performance System in Package (SiP), equipped with a 3-axis gyroscope, and a 3-axis accelerometer.

[Learn More]

Magneto 12 Click

0

Magneto 12 Click is a compact add-on board that contains an accurate and reliable magnetic sensing device. This board features the A31315, a magnetic position sensor designed for on- and off-axis rotary and linear stroke position measurement from Allegro Microsystems. This sensor integrates vertical and planar Hall-effect elements with precision temperature-compensating circuitry to detect two out of three magnetic field components (X and Y). Using configurable signal processing (the user is allowed to process the output signal in analog or digital form), linearization and angle calculation allows the A31315 to accurately resolve the absolute rotary (full 360° and short-stroke <360°) or linear position of a moving magnetic target.

[Learn More]

GNSS 12 Click

0

GNSS 12 Click is a compact add-on board that provides fast positioning capability. This board features the CAM-M8C, a professional-grade GNSS module built on the high-performing M8 GNSS engine from u-blox. This module utilizes concurrent reception of up to three GNSS systems (GPS/Galileo together with either BeiDou or GLONASS), offering high sensitivity and strong signal levels. Besides internal, the CAM-M8C can use an optional external active antenna. It has a configurable host interface, advanced jamming/spoofing detection, and provides outstanding positioning accuracy even in GNSS-hostile environments.

[Learn More]