TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (388 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140352 times)
  2. FAT32 Library (72750 times)
  3. Network Ethernet Library (57867 times)
  4. USB Device Library (48022 times)
  5. Network WiFi Library (43607 times)
  6. FT800 Library (43031 times)
  7. GSM click (30172 times)
  8. mikroSDK (28843 times)
  9. PID Library (27073 times)
  10. microSD click (26604 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

HAPTIC 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Haptic

Downloaded: 232 times

Not followed.

License: MIT license  

HAPTIC 2 Click is a compact add-on board that contains a linear vibration driver. This board features the LC898302AXA, a motor driver dedicated to LRA and ERM applications from ON Semiconductor. Controlled by only one pin, it allows crisp vibration thanks to automatic braking and over-driving feature and ignores the deviation of resonance frequency thanks to auto-tuning function. The original driving waveform will enable you to reduce power consumption, and it is helpful to maintain battery lifetime. This Click board™ is suitable for numerous everyday applications such as indicator systems, game consoles, training equipment/simulators with haptics function, robotics and mechatronics, and many more.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "HAPTIC 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "HAPTIC 2 Click" changes.

Do you want to report abuse regarding "HAPTIC 2 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


HAPTIC 2 Click

HAPTIC 2 Click is a compact add-on board that contains a linear vibration driver. This board features the LC898302AXA, a motor driver dedicated to LRA and ERM applications from ON Semiconductor. Controlled by only one pin, it allows crisp vibration thanks to automatic braking and over-driving feature and ignores the deviation of resonance frequency thanks to auto-tuning function. The original driving waveform will enable you to reduce power consumption, and it is helpful to maintain battery lifetime.

haptic2_click.png

Click Product page


Click library

  • Author : Nikola Peric
  • Date : Feb 2022.
  • Type : PWM type

Software Support

We provide a library for the Haptic2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Library Description

This library contains API for Haptic2 Click driver.

Standard key functions :

  • haptic2_cfg_setup Config Object Initialization function.

    void haptic2_cfg_setup ( haptic2_cfg_t *cfg );
  • haptic2_init Initialization function.

    HAPTIC2_RETVAL haptic2_init ( haptic2_t *ctx, haptic2_cfg_t *cfg );
  • haptic2_default_cfg Click Default Configuration function.

    void haptic2_default_cfg ( haptic2_t *ctx );

Example key functions :

  • haptic2_set_duty_cycle Sets PWM duty cycle.

    err_t haptic2_set_duty_cycle ( haptic2_t *ctx, float duty_cycle );
  • haptic2_pwm_stop Stop PWM module.

    err_t haptic2_pwm_stop ( haptic2_t *ctx );
  • haptic2_pwm_start Start PWM module.

    err_t haptic2_pwm_start ( haptic2_t *ctx );

Examples Description

This app shows some of the functions that Haptic 2 Click has.

The demo application is composed of two sections :

Application Init

Initialization driver enables - PWM, PWM signal is set to 8000 HZ and to give a 0% duty cycle and start PWM module.

void application_init ( void ) 
{
    log_cfg_t log_cfg;          /**< Logger config object. */
    haptic2_cfg_t haptic2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf( &logger, "\r\n" );
    log_info( &logger, " Application Init " );

    // Click initialization.

    haptic2_cfg_setup( &haptic2_cfg );
    HAPTIC2_MAP_MIKROBUS( haptic2_cfg, MIKROBUS_1 );
    err_t init_flag  = haptic2_init( &haptic2, &haptic2_cfg );
    if ( init_flag == PWM_ERROR ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    haptic2_default_cfg ( &haptic2 );

    haptic2_set_duty_cycle ( &haptic2, 0.0 );
    haptic2_pwm_start( &haptic2 );

    log_info( &logger, " Application Task " );
}

Application Task

This is an example that demonstrates the use of the Haptic 2 Click board. In this example, we switched PWM signal back and forth from 10% duty cycle to 90% duty cycle every 500 milliseconds. Results are being sent to the Usart Terminal where you can track their changes.

void application_task ( void ) 
{
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    haptic2_set_duty_cycle ( &haptic2, duty );
    log_printf( &logger, "Duty: %d%%\r\n", ( uint16_t )( duty_cnt * 10 ) );
    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Haptic2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all Mikroelektronika compilers.


ALSO FROM THIS AUTHOR

DIGI IO Click

0

DIGI I/O Click is a compact add-on board for flexible industrial digital input and output control. This board features the MAX14906, a quad-channel industrial digital input/output IC from Analog Devices, compliant with IEC 61131-2 standard. Each channel can be individually configured as a high-side switch, push-pull driver, or digital input, supporting various operating modes with current limiting up to 1.2A and fast signal transmission. The board supports 24V operation by default, with options for individual channel power configuration, and includes built-in diagnostics like overvoltage and undervoltage detection, thermal overload, and wire-break detection. DIGI I/O Click is ideal for industrial automation, motor control systems, PLCs, and Distributed Control Systems (DCS).

[Learn More]

LTE IoT 8 Click

0

LTE IoT 8 Click is a compact add-on board that contains a low-power solution for LTE and NB-IoT connectivity. This board features the SKY66430-11, a multi-band multi-chip System-in-Package (SiP) supporting 5G Massive IoT (LTE-M/NB-IoT) platforms from Skyworks Solutions and Sequans Communications.

[Learn More]

Accel 3 Click

0

Accel 3 Click represent 3-axis linear accelerometer.

[Learn More]