We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.18
mikroSDK Library: 2.0.0.0
Category: Motion
Downloaded: 255 times
Not followed.
License: MIT license
Accel 4 Click is a compact add-on board that contains an acceleration sensor. This board features the FXLS8964AF, a 12-bit three-axis accelerometer from NXP Semiconductors. It allows selectable full-scale acceleration measurements in ranges of �2g, �4g, �8g, or �16g in three axes with a configurable host interface that supports both SPI and I2C serial communication. The FXLS8964AF supports both high-performance and low-power operating modes, allowing maximum flexibility to meet the resolution and power needs for various unique use cases.
Do you want to subscribe in order to receive notifications regarding "Accel 4 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Accel 4 Click" changes.
Do you want to report abuse regarding "Accel 4 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4630_accel_4_click.zip [457.32KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Accel 4 Click is a compact add-on board that contains an acceleration sensor. This board features the FXLS8964AF, a 12-bit three-axis accelerometer from NXP Semiconductors. It allows selectable full-scale acceleration measurements in ranges of �2g, �4g, �8g, or �16g in three axes with a configurable host interface that supports both SPI and I2C serial communication. The FXLS8964AF supports both high-performance and low-power operating modes, allowing maximum flexibility to meet the resolution and power needs for various unique use cases.
We provide a library for the Accel4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for Accel4 Click driver.
accel4_cfg_setup
Config Object Initialization function.
void accel4_cfg_setup ( accel4_cfg_t *cfg );
accel4_init
Initialization function.
err_t accel4_init ( accel4_t *ctx, accel4_cfg_t *cfg );
accel4_default_cfg
Click Default Configuration function.
err_t accel4_default_cfg ( accel4_t *ctx );
accel4_get_int1
Get interrupt 1 pin state.
uint8_t accel4_get_int1 ( accel4_t *ctx );
accel4_axes_get_resolution
Reads current resolution of output data.
float accel4_axes_get_resolution ( accel4_t *ctx );
accel4_get_axes_data
Accel data reading.
err_t accel4_get_axes_data ( accel4_t *ctx, accel4_axes_t *axes );
This example is a showcase of the ability of the device to read 3 axis data in varity of 3 resolutions, ability to configure 2 interrput pins for user needs etc..
The demo application is composed of two sections :
Initializion of communication modules (I2C/SPI, UART) and additional interrupt pins. Reading status register in loop until power up bit is set to 1. Then reads device ID and checks if it's valid, and in the end configures device to get interrupt on new data received, set device in active mode and sets currently configured resolution to context object.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
accel4_cfg_t accel4_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
accel4_cfg_setup( &accel4_cfg );
ACCEL4_MAP_MIKROBUS( accel4_cfg, MIKROBUS_1 );
err_t init_flag = accel4_init( &accel4, &accel4_cfg );
if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
{
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
uint8_t temp_data = 0;
// Wait for the powerup status
do {
accel4_generic_read( &accel4, ACCEL4_REG_INT_STATUS, &temp_data, 1 );
Delay_ms ( 1 );
}while ( ( temp_data & 1 ) != 1 );
//Read device ID
accel4_generic_read( &accel4, ACCEL4_REG_WHO_AM_I, &temp_data, 1 );
log_printf( &logger, " > WHO AM I: 0x%.2X\r\n", ( uint16_t )temp_data );
if ( ACCEL4_DEVICE_ID != temp_data )
{
log_error( &logger, " ID" );
for( ; ; );
}
accel4_default_cfg ( &accel4 );
Delay_ms ( 1000 );
log_info( &logger, " Application Task " );
}
Reads data of all 3 axes whenever interrupt is received and logs it.
void application_task ( void )
{
if ( accel4_get_int1( &accel4 ) )
{
accel4_axes_t axes;
accel4_get_axes_data( &accel4, &axes );
log_printf( &logger, " > X: %.2f\r\n", axes.x );
log_printf( &logger, " > Y: %.2f\r\n", axes.y );
log_printf( &logger, " > Z: %.2f\r\n", axes.z );
log_printf( &logger, "*****************************************\r\n" );
Delay_ms ( 300 );
}
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.