TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (404 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141129 times)
  2. FAT32 Library (73913 times)
  3. Network Ethernet Library (58555 times)
  4. USB Device Library (48745 times)
  5. Network WiFi Library (44391 times)
  6. FT800 Library (44000 times)
  7. GSM click (30721 times)
  8. mikroSDK (29479 times)
  9. PID Library (27306 times)
  10. microSD click (27132 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

H-Bridge 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 267 times

Not followed.

License: MIT license  

H-Bridge 7 Click features flexible motor driver IC for a wide variety of applications, labeled as the DRV8876N. This Click board™ integrates an N-channel H-bridge, charge pump regulator, and protection circuitry. The charge pump improves efficiency by allowing for both high-side and low-side N-channels MOSFETs and 100% duty cycle support. This IC allows the H-Bridge 7 Click to achieve ultra-low quiescent current draw by shutting down most of the internal circuitry with his low-power sleep mode.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "H-Bridge 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "H-Bridge 7 Click" changes.

Do you want to report abuse regarding "H-Bridge 7 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


H-Bridge 7 Click

H-Bridge 7 Click features flexible motor driver IC for a wide variety of applications, labeled as the DRV8876N. This Click board™ integrates an N-channel H-bridge, charge pump regulator, and protection circuitry. The charge pump improves efficiency by allowing for both high-side and low-side N-channels MOSFETs and 100% duty cycle support. This IC allows the H-Bridge 7 Click to achieve ultra-low quiescent current draw by shutting down most of the internal circuitry with his low-power sleep mode.

hbridge7_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jun 2020.
  • Type : GPIO type

Software Support

We provide a library for the Hbridge7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Hbridge7 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void hbridge7_cfg_setup ( hbridge7_cfg_t *cfg );

  • Initialization function.

    HBRIDGE7_RETVAL hbridge7_init ( hbridge7_t ctx, hbridge7_cfg_t cfg );

Example key functions :

  • Set motor control.

    void hbridge7_motor_control ( hbridge7_t *ctx, uint8_t ctrl );

  • Get Fault pin state.

    uint8_t hbridge7_get_fault_state ( hbridge7_t *ctx );

Examples Description

This example demonstrates the use of H-Bridge 7 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and makes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    hbridge7_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    hbridge7_cfg_setup( &cfg );
    HBRIDGE7_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    hbridge7_init( &hbridge7, &cfg );
}

Application Task

Drives the motor in the forward direction for 5 seconds, then pulls brake for 2 seconds, and after that drives it in the reverse direction for 5 seconds, and finally, disconnects the motor for 2 seconds. Each step will be logged on the USB UART where you can track the program flow.


void application_task ( void )
{
    log_printf( &logger, "The motor turns forward! \r\n" );
    hbridge7_motor_control( &hbridge7, HBRIDGE7_MOTOR_FORWARD );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "Pull brake! \r\n" );
    hbridge7_motor_control( &hbridge7, HBRIDGE7_MOTOR_BRAKE );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "The motor turns in reverse! \r\n" );
    hbridge7_motor_control( &hbridge7, HBRIDGE7_MOTOR_REVERSE );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "The motor is disconnected (High-Z)!  \r\n" );
    hbridge7_motor_control( &hbridge7, HBRIDGE7_MOTOR_SLEEP );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}   

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Hbridge7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

DC Motor click

5

This is a simple demonstration of using the DRV8833 dual bridge motor driver (http://www.ti.com/product/drv8833), which is being used for controlling DC brush motors, a bipolar stepper motor, solenoids, or other inductive loads.

[Learn More]

UT-L 7-SEG R Click

0

UT-L 7-SEG R Click carries two SMD ultra thin LED 7-SEG displays and the MAX6969 constant-current LED driver from Maxim Integrated. The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over SPI interface.

[Learn More]

Multi Stepper TB67S209 Click

0

Multi Stepper Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the TB67S209FTG, CLOCK-in controlled bipolar stepping motor driver from Toshiba Semiconductor. It supports a PWM constant-current control drive, selectable mixed decay mode, and allows from full-step up to 1/32 steps resolution for less motor noise and smoother control. It has a wide operating voltage range of 10V to 47V with an output current capacity of 2.8A in addition to several built-in error detection circuits.

[Learn More]