TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140953 times)
  2. FAT32 Library (73507 times)
  3. Network Ethernet Library (58321 times)
  4. USB Device Library (48508 times)
  5. Network WiFi Library (44132 times)
  6. FT800 Library (43686 times)
  7. GSM click (30546 times)
  8. mikroSDK (29286 times)
  9. PID Library (27220 times)
  10. microSD click (26931 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LED Driver 8 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: LED Drivers

Downloaded: 180 times

Not followed.

License: MIT license  

LED Driver 8 Click is a compact add-on board optimized for dimming and blinking 32 mA RGBA LEDs. This board features the PCA9957HNMP, 24-channel SPI-compatible constant current LED driver from NXP Semiconductors.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LED Driver 8 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LED Driver 8 Click" changes.

Do you want to report abuse regarding "LED Driver 8 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


LED Driver 8 Click

LED Driver 8 Click is a compact add-on board optimized for dimming and blinking 32 mA RGBA LEDs. This board features the PCA9957HNMP, 24-channel SPI-compatible constant current LED driver from NXP Semiconductors.

leddriver8_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Sep 2020.
  • Type : SPI type

Software Support

We provide a library for the LedDriver8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for LedDriver8 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void leddriver8_cfg_setup ( leddriver8_cfg_t *cfg );

  • Initialization function.

    LEDDRIVER8_RETVAL leddriver8_init ( leddriver8_t ctx, leddriver8_cfg_t cfg );

Example key functions :

  • Function for set Brightness

    void leddriver8_set_brightness ( leddriver8_t *ctx, uint8_t num_led, uint8_t value );

  • Function for set output gain

    void leddriver8_set_output_gain ( leddriver8_t *ctx, uint8_t num_led, uint8_t value );

  • Function for set mode registers

    void leddriver8_set_mode_register( leddriver8_t *ctx, uint8_t mode_1, uint8_t mode_2 );

Examples Description

This example demonstrates the use of LED Driver 8 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and configures the Click board.


void application_init ( void )
{
    log_cfg_t log_cfg;
    leddriver8_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    leddriver8_cfg_setup( &cfg );
    LEDDRIVER8_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    leddriver8_init( &leddriver8, &cfg );

    leddriver8_reset( &leddriver8 );
    Delay_ms ( 500 );

    leddriver8_output_enable_pin( &leddriver8, LEDDRIVER8_ENABLE_LED_OUTPUTS );
    leddriver8_set_output_gain( &leddriver8, LEDDRIVER8_OUTPUT_GAIN_ALL_LED, LEDDRIVER8_FULL_OUTPUT_CURRENT_GAIN );
    leddriver8_set_mode_register( &leddriver8, LEDDRIVER8_MODE1_NORMAL_MODE, LEDDRIVER8_MODE2_DMBLNK_DIMMING |
                                  LEDDRIVER8_MODE2_CLRERR_ALL | LEDDRIVER8_MODE2_EXP_DISABLE );
    log_info( &logger, "---- Application Task ----" );
    Delay_ms ( 500 );
}

Application Task

Increases the LEDs brightness then toggles all LEDs with a one-second delay. Each step will be logged on the USB UART where you can track the program flow.


void application_task ( void )
{
    uint16_t cnt;

    log_printf( &logger, "Increasing LEDs brightness...\r\n" );
    log_printf( &logger, "----------------------------\r\n" );
    for ( cnt = LEDDRIVER8_MIN_BRIGHTNESS; cnt <= LEDDRIVER8_MAX_BRIGHTNESS; cnt++ )
    {
        leddriver8_set_brightness( &leddriver8, LEDDRIVER8_BRIGHTNESS_ALL_LED, cnt );
        Delay_ms ( 20 );
    }

    log_printf( &logger, "Toggling all LEDs...\r\n" );
    log_printf( &logger, "----------------------------\r\n" );
    for ( cnt = 0; cnt < 5; cnt++ )
    {
       leddriver8_set_brightness( &leddriver8, LEDDRIVER8_BRIGHTNESS_ALL_LED, LEDDRIVER8_MAX_BRIGHTNESS );
       Delay_ms ( 1000 );
       leddriver8_set_brightness( &leddriver8, LEDDRIVER8_BRIGHTNESS_ALL_LED, LEDDRIVER8_MIN_BRIGHTNESS );
       Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LedDriver8

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Color 11 Click

0

Color 11 Click is a compact add-on board that provides an accurate color-sensing solution. This board features the TCS34083M, an ALS/color sensor with selective flicker detection from ams-OSRAM. The sensor features ambient light and color (RGB) sensing and flicker detection, which suppresses cross-coupling from 940nm IR if generated by adjacent circuits. The main benefits of this sensor are invisible ALS and color sensing under any glass type, unique fast ALS integration mode, and more. It features configurable programmable gain and integration time, tailored ALS and color response, ALS/color interrupt with thresholds, and many more.

[Learn More]

EnOcean 3 click

5

EnOcean 3 Click carries a ultra-low power TCM515 transceiver gateway module which operates at 868MHz radio band, perfectly suited for the realization of transceiver gateways, actuators and controllers for systems communicating based on the EnOcean radio standard.

[Learn More]

Accel 15 Click

0

Accel 15 Click is a compact add-on board that contains a longevity acceleration sensor. This board features the BMA490L, a high-performance 16-bit digital triaxial acceleration sensor with extended availability of up to ten years from Bosch Sensortech. It allows selectable full-scale acceleration measurements in ranges of ±2g, ±4g, ±8g, and ±16g in three axes with a configurable host interface that supports both I2C and SPI serial communication and with intelligent on-chip motion-triggered interrupt features. Intelligent signal processing and evaluation in the accelerometer ASIC enables advanced gesture recognition for numerous industrial IoT applications where low power consumption is vital. This Click board™ is suitable for home appliances, power tools, and other industrial products whose lifetime is essential.

[Learn More]