TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142085 times)
  2. FAT32 Library (75308 times)
  3. Network Ethernet Library (59504 times)
  4. USB Device Library (49526 times)
  5. Network WiFi Library (45290 times)
  6. FT800 Library (44927 times)
  7. GSM click (31442 times)
  8. mikroSDK (30466 times)
  9. microSD click (27804 times)
  10. PID Library (27625 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

ccRF 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Sub-1 GHz Transceivers

Downloaded: 440 times

Not followed.

License: MIT license  

ccRF2 Click carries CC1120, the fully integrated, high-performance single-chip radio transceiver with extremely low power consumption.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "ccRF 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "ccRF 2 Click" changes.

Do you want to report abuse regarding "ccRF 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


ccRF 2 Click

ccRF2 Click carries CC1120, the fully integrated, high-performance single-chip radio transceiver with extremely low power consumption.

ccrf2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : maj 2020.
  • Type : SPI type

Software Support

We provide a library for the ccRf2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for ccRf2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void ccrf2_cfg_setup ( ccrf2_cfg_t *cfg );

  • Initialization function.

    CCRF2_RETVAL ccrf2_init ( ccrf2_t ctx, ccrf2_cfg_t cfg );

  • Click Default Configuration function.

    void ccrf2_default_cfg ( ccrf2_t *ctx );

Example key functions :

  • Function receives RX data from the transmit module of the CC1120 single-chip radio transceiver.

    uint8_t ccrf2_receive_rx_data ( ccrf2_t ctx, uint8_t rx_data );

  • Function sends TX data to the receive module of the CC1120 single-chip radio transceiver.

    void ccrf2_send_tx_data ( ccrf2_t ctx, uint8_t tx_data, uint8_t n_bytes );

  • Function sets RX mode of the CC1120 single-chip radio transceiver on the ccRF 2 Click board.

    void ccrf2_set_rx_mode ( ccrf2_t *ctx );

Examples Description

This example demonstrates the use of ccRF 2 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver, performs the default configuration and enables the selected mode.


void application_init ( void )
{
    log_cfg_t log_cfg;
    ccrf2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    ccrf2_cfg_setup( &cfg );
    CCRF2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ccrf2_init( &ccrf2, &cfg );
    log_printf( &logger, "----------------------\r\n" );
    log_printf( &logger, " Hardware reset\r\n" );
    ccrf2_hw_reset( &ccrf2 );
    Delay_ms ( 1000 );

    log_printf( &logger, "----------------------\r\n" );
    log_printf( &logger, " Default config\r\n" );
    ccrf2_default_cfg( &ccrf2 );
    Delay_ms ( 1000 );

    log_printf( &logger, "----------------------\r\n" );

#ifdef DEMO_APP_RECEIVER
    ccrf2_set_rx_mode( &ccrf2 );

    log_printf( &logger, " Receiver mode\r\n" );
#endif
#ifdef DEMO_APP_TRANSMITTER
    ccrf2_set_tx_mode( &ccrf2 );

    log_printf( &logger, " Transmitter mode\r\n" );
#endif

    log_printf( &logger, "----------------------\r\n" );
    Delay_ms ( 100 );
}

Application Task

Depending on the selected mode, it reads the received data or sends the desired message every 2 seconds. All data is being logged on the USB UART where you can track their changes.


void application_task ( void )
{
#ifdef DEMO_APP_RECEIVER
    uint8_t num_bytes = ccrf2_receive_rx_data( &ccrf2, &rx_buffer[ 0 ] );
    if ( num_bytes )
    {
        log_printf( &logger, " Received message: " );
        for ( uint8_t cnt = 3; cnt < rx_buffer[ 0 ]; cnt++ )
        {
            log_printf( &logger, "%c", rx_buffer[ cnt ] );
        }
        log_printf( &logger, " Packet number: %u", ccrf2.packet_counter );
        log_printf( &logger, "\r\n----------------------\r\n" );
    }
#endif
#ifdef DEMO_APP_TRANSMITTER
    ccrf2_send_tx_data( &ccrf2, TEXT_TO_SEND, strlen( TEXT_TO_SEND ) );
    log_printf( &logger, " Sent message: MikroE\r\n" );
    log_printf( &logger, " Packet number: %u\r\n", ccrf2.packet_counter );
    log_printf( &logger, "----------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#endif
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ccRf2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

USB SPI click - Example

0

This is a sample program which demonstrates the use of USB SPI click This device accepts commands from SPI Terminal and sends appropriate bytes via SPI interface. It is very desirable tool for designing SPI slave devices such as sensors...

[Learn More]

Boost 11 Click

0

Boost 11 Click is a compact add-on board that boosts low input voltages to a stable output. This board features the XCL105B331H2-G, a synchronous step-up DC/DC converter from TOREX Semi. It operates from an input voltage as low as 0.9V, ideal for devices using single Alkaline or Nickel-metal hydride batteries, with an output fixed at 3.3V. It features an EN pin for easy start-up and standby mode and supports both 3.3V and 5V logic levels. This versatility makes Boost 11 Click suitable for industrial equipment, IoT devices, wearables, and applications prioritizing battery life.

[Learn More]

Volume Click

0

Volume Click is a compact add-on board that provides the user with complete digital volume control. This board features the CS3310, a stereo digital volume control designed specifically for audio systems from Cirrus Logic.

[Learn More]