TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (400 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (127 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140746 times)
  2. FAT32 Library (73299 times)
  3. Network Ethernet Library (58173 times)
  4. USB Device Library (48365 times)
  5. Network WiFi Library (43944 times)
  6. FT800 Library (43496 times)
  7. GSM click (30433 times)
  8. mikroSDK (29133 times)
  9. PID Library (27146 times)
  10. microSD click (26816 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Flash 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: FLASH

Downloaded: 259 times

Not followed.

License: MIT license  

Flash 4 Click is a perfect solution for the mass storage option in various embedded applications. With fast performance being one of its key features, Flash 4 Click can also be used for the code shadowing, execute-in-place (XIP), and data storage.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Flash 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Flash 4 Click" changes.

Do you want to report abuse regarding "Flash 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Flash 4 Click

Flash 4 Click is a perfect solution for the mass storage option in various embedded applications. With fast performance being one of its key features, Flash 4 Click can also be used for the code shadowing, execute-in-place (XIP), and data storage.

flash4_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Flash4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Flash4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void flash4_cfg_setup ( flash4_cfg_t *cfg );

  • Initialization function.

    FLASH4_RETVAL flash4_init ( flash4_t ctx, flash4_cfg_t cfg );

  • Generic transfer function.

    void flash4_generic_transfer ( flash4_t ctx, uint8_t wr_buf, uint16_t wr_len, uint8_t *rd_buf, uint16_t rd_len );

Example key functions :

  • Function for read Manufacturer ID.

    void flash4_read_manufacturer_id ( flash4_t ctx, uint8_t device_id );

  • Write command function.

    void flash4_write_command ( flash4_t *ctx, uint8_t cmd );

  • Read Flash with 4 byte address function.

    void flash4_read_flash_4 ( flash4_t ctx, uint8_t out_data, uint32_t addr, uint8_t n_data );

Examples Description

This example demonstrates the use of Flash 4 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and enables the Click board, then checks the communication by reading the device and manufacturer IDs.


void application_init ( void )
{
    log_cfg_t log_cfg;
    flash4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    flash4_cfg_setup( &cfg );
    FLASH4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    flash4_init( &flash4, &cfg );

    flash4_reset( &flash4 );

    Delay_ms ( 1000 );

    flash4_read_manufacturer_id( &flash4, device_id );

    if ( device_id[ 0 ] != FLASH4_MANUFACTURER_ID || device_id[ 1 ] != FLASH4_DEVICE_ID )
    {
        log_error( &logger, "WRONG ID READ" );
        log_printf( &logger, "Please restart your system.\r\n" );
        for( ; ; );
    }
    Delay_ms ( 1000 );
}

Application Task

Erases sector memory starting from 0x00001234 address, then writes a desired message to the same address. After that, verifies if the message is written correctly by reading it back and displaying it to the USB UART every 5 seconds.


void application_task ( void )
{
    char read_buffer[ 10 ] = { 0 };

    flash4_write_command( &flash4, FLASH4_CMD_WRITE_ENABLE_WREN );
    log_printf( &logger, "--- Erase chip --START-- \r\n" );
    flash4_sector_erase_4( &flash4,  0x00001234 );
    while ( flash4_check_wip( &flash4 ) );
    log_printf( &logger, "--- Erase chip --DONE-- \r\n" );

    flash4_write_command( &flash4, FLASH4_CMD_WRITE_ENABLE_WREN );
    flash4_page_program_4( &flash4, DEMO_MESSAGE, 0x00001234, strlen( DEMO_MESSAGE ) );
    while ( flash4_check_wip( &flash4 ) );
    Delay_100ms( );

    flash4_read_flash_4( &flash4, read_buffer, 0x00001234, strlen( DEMO_MESSAGE ) );
    while ( flash4_check_wip( &flash4 ) );

    log_printf( &logger, "--- Read buffer : %s\r\n", read_buffer );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Flash4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Magneto 8 Click

0

Magneto 8 Click is a compact add-on board that contains an easy-to-program magnetic rotary position sensor with incremental quadrature (A/B) and 12-bit digital outputs. This board features the AS5601, 12-bit programmable contactless encoder IC from AMS-AG.

[Learn More]

H-Bridge 3 Click

0

H-Bridge 3 Click is designed for the control of small DC motors and inductive loads, it features TLE9201SG a general purpose 6A H-Bridge perfectly suited for industrial and automotive applications. This IC meets the harsh automotive environmental conditions and it is qualified in accordance with the AEC-Q100 standard, also has set of features such as the short circuit and over-temperature protection, under-voltage protection, detailed SPI diagnosis or simple error flag and fully 3.3/5.5V compatible logic inputs.

[Learn More]

6DOF IMU 6 Click

5

6DOF IMU 6 Click features a 6-axis MotionTracking device that combines a 3-axis gyroscope, a 3-axis accelerometer, and a Digital Motion Processorâ„¢ (DMP) labeled as ICM-20689.

[Learn More]