TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140959 times)
  2. FAT32 Library (73512 times)
  3. Network Ethernet Library (58321 times)
  4. USB Device Library (48508 times)
  5. Network WiFi Library (44132 times)
  6. FT800 Library (43687 times)
  7. GSM click (30546 times)
  8. mikroSDK (29290 times)
  9. PID Library (27220 times)
  10. microSD click (26931 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Clock Gen Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Clock generator

Downloaded: 323 times

Not followed.

License: MIT license  

Clock Gen Click offers an ideal replacement for crystals, crystal oscillators, VCXOs, phase-locked loops (PLLs), and fanout buffers in cost-sensitive applications. This Click features the Si5351A from Silicon Labs, an I2C configurable clock generator based on a PLL + high resolution MultiSynth fractional divider architecture which can generate any frequency up to 200 MHz on each of its outputs with 0 ppm error.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Clock Gen Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Clock Gen Click" changes.

Do you want to report abuse regarding "Clock Gen Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Clock Gen Click

Clock Gen Click offers an ideal replacement for crystals, crystal oscillators, VCXOs, phase-locked loops (PLLs), and fanout buffers in cost-sensitive applications. This Click features the Si5351A from Silicon Labs, an I2C configurable clock generator based on a PLL + high resolution MultiSynth fractional divider architecture which can generate any frequency up to 200 MHz on each of its outputs with 0 ppm error.

clockgen_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : jun 2020.
  • Type : I2C type

Software Support

We provide a library for the ClockGen Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for ClockGen Click driver.

Standard key functions :

  • Config Object Initialization function.

    void clockgen_cfg_setup ( clockgen_cfg_t *cfg );

  • Initialization function.

    CLOCKGEN_RETVAL clockgen_init ( clockgen_t ctx, clockgen_cfg_t cfg );

  • Click Default Configuration function.

    void clockgen_default_cfg ( clockgen_t *ctx );

Example key functions :

  • This function sets clock divider

    void clockgen_set_frequency ( clockgen_t *ctx, uint8_t clk_num, uint8_t pll_num, uint32_t freq );

  • This function sets pll.

    void clockgen_setup_pll ( clockgen_t *ctx, uint8_t pll, uint8_t mult, uint32_t num );

  • This function sets clock frequency on specific clock.

    void clockgen_setup_multisyinth ( clockgen_t *ctx, uint8_t clk_num, uint32_t divider, uint32_t num );

Examples Description

Clock Gen Click represent a replacement for crystals, crystal oscillators, VCXOs, phase-locked loops (PLLs), and fanout buffers. This Click features an I2C configurable clock generator based on a PLL + high resolution MultiSynth fractional divider architecture which can generate any frequency up to 200 MHz with 0 ppm error. The chip on Click is capable of generating synchronous or free-running non-integer related clock frequencies at each of its outputs (CLK0, CLK1, and CLK2), enabling one device to synthesize clocks for multiple clock domains in a design.

The demo application is composed of two sections :

Application Init

Configures device to default function that enables clock 0 and disables all others.


void application_init ( void )
{
    log_cfg_t log_cfg;
    clockgen_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );


    //  Click initialization.

    clockgen_cfg_setup( &cfg );
    CLOCKGEN_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    clockgen_init( &clockgen, &cfg );

    clockgen_default_cfg( &clockgen );

    Delay_ms ( 500 );
}

Application Task

Changes 4 different frequency in span of 5 seconds.


void application_task ( void )
{
    clockgen_set_frequency( &clockgen, CLOCKGEN_CLOCK_0, CLOCKGEN_PLLA, 1 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    clockgen_set_frequency( &clockgen, CLOCKGEN_CLOCK_0, CLOCKGEN_PLLA, 3 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    clockgen_set_frequency( &clockgen, CLOCKGEN_CLOCK_0, CLOCKGEN_PLLA, 10 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    clockgen_set_frequency( &clockgen, CLOCKGEN_CLOCK_0, CLOCKGEN_PLLA, 5 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ClockGen

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

GainAMP click

11

GainAMP click carries the LTC®6912 dual channel, low noise, digitally programmable gain amplifier (PGA). The click is designed to work on either 3.3V or 5V power supply. It communicates with the target MCU over SPI interface, with additional functionality provided by the following pins on the mikroBUS line: AN, RST.

[Learn More]

Hall Current 18 Click

0

Hall Current 18 Click is a compact add-on board that contains a precise solution for AC/DC current sensing. This board features the MCS1806, an isolated Hall-effect current sensor from MPS. The sensor is immune to external magnetic fields via differential sensing and has no magnetic hysteresis. The MCS1806 features galvanic isolation between the pins of the primary conductive path and the sensor leads, allowing it to replace optoisolators and other isolation devices.

[Learn More]

BT Audio Click

0

If you are getting tired of all those cables you need just to listen to your favorite song over speakers.

[Learn More]