TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141819 times)
  2. FAT32 Library (74953 times)
  3. Network Ethernet Library (59310 times)
  4. USB Device Library (49305 times)
  5. Network WiFi Library (45103 times)
  6. FT800 Library (44672 times)
  7. GSM click (31286 times)
  8. mikroSDK (30212 times)
  9. microSD click (27657 times)
  10. PID Library (27562 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DAC 6 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: DAC

Downloaded: 399 times

Not followed.

License: MIT license  

DAC 6 Click is a compact add-on board that contains a fully-featured, general-purpose voltage-output digital-to-analog converter.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DAC 6 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DAC 6 Click" changes.

Do you want to report abuse regarding "DAC 6 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


DAC 6 Click

DAC 6 Click is a compact add-on board that contains a fully-featured, general-purpose voltage-output digital-to-analog converter.

dac6_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : jul 2020.
  • Type : SPI type

Software Support

We provide a library for the Dac6 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Dac6 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void dac6_cfg_setup ( dac6_cfg_t *cfg );

  • Initialization function.

    DAC6_RETVAL dac6_init ( dac6_t ctx, dac6_cfg_t cfg );

Example key functions :

  • Function is used to set operation mode output channel and level.

    float dac6_set_output ( dac6_t *ctx );

  • Sends 16-bit data to the device's input shift register.

    void dac6_write_data ( dac6_t *ctx, uint16_t wr_data );

Examples Description

DAC 6 Click carries 12-bit buffered Digital-to-Analog Converter. It converts digital value to the corresponding voltage level using external voltage reference.

The demo application is composed of two sections :

Application Init

Initalizes SPI driver.


void application_init ( void )
{
    log_cfg_t log_cfg;
    dac6_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    dac6_cfg_setup( &cfg );
    DAC6_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    dac6_init( &dac6, &cfg );
}

Application Task

This example shows capabilities of DAC 6 Click by changeing output values from 0 to the maximum output range on all four channels. Output voltage is calculated by using the equation : Vout = Vrefin * (set_out / 4095).


void application_task ( void )
{
    for ( n_cnt = 0; n_cnt < 4096; n_cnt += 315 )
    {
        dac6.chan    = DAC6_CHANNEL_A;
        dac6.op_mod  = DAC6_WRITE_SPEC_UPDATE_OUTPUT;
        dac6.v_ref   = DAC6_V_REF_2048;
        dac6.set_out = n_cnt;

        v_out = dac6_set_output( &dac6 );

        log_printf( &logger, " Channel  A : VOUT ~ %.2f mV\r\n", v_out );
        log_printf( &logger, "--------------------\r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }

    for ( n_cnt = 0; n_cnt < 4096; n_cnt += 315 )
    {
        dac6.chan    = DAC6_CHANNEL_B;
        dac6.op_mod  = DAC6_WRITE_SPEC_UPDATE_OUTPUT;
        dac6.v_ref   = DAC6_V_REF_2048;
        dac6.set_out = n_cnt;

        v_out = dac6_set_output( &dac6 );

        log_printf( &logger, " Channel  B : VOUT ~ %.2f mV\r\n", v_out );
        log_printf( &logger, "--------------------\r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }

    for ( n_cnt = 0; n_cnt < 4096; n_cnt += 315 )
    {
        dac6.chan    = DAC6_CHANNEL_C;
        dac6.op_mod  = DAC6_WRITE_SPEC_UPDATE_OUTPUT;
        dac6.v_ref   = DAC6_V_REF_2048;
        dac6.set_out = n_cnt;

        v_out = dac6_set_output( &dac6 );

        log_printf( &logger, " Channel  C : VOUT ~ %.2f mV\r\n", v_out );
        log_printf( &logger, "--------------------\r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }

    for ( n_cnt = 0; n_cnt < 4096; n_cnt += 315 )
    {
        dac6.chan    = DAC6_CHANNEL_D;
        dac6.op_mod  = DAC6_WRITE_SPEC_UPDATE_OUTPUT;
        dac6.v_ref   = DAC6_V_REF_2048;
        dac6.set_out = n_cnt;

        v_out = dac6_set_output( &dac6 );

        log_printf( &logger, " Channel  D : VOUT ~ %.2f mV\r\n", v_out );
        log_printf( &logger, "--------------------\r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }

    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Dac6

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LTE Cat.1-EU Click

0

LTE Cat.1-EU Click is a Click board™ based on Thales Cinterion® ELS61 wireless module that delivers highly efficient Cat 1 LTE connectivity for M2M IoT solutions offering seamless fall back to 2G and 3G networks. The best in class solution enables M2M optimized speeds of 10Mbit/s download and 5Mbit/s uplink making it ideal for the vast number of M2M and industrial IoT applications that are not dependent on speed but that requires the longevity of LTE networks, while still providing 3G and 2G connectivity to ensure complete population and geographic coverage as LTE rolls out.

[Learn More]

Pressure 11 Click

0

This sensor offers many benefits, including low power consumption, high resolution of the pressure data, embedded thermal compensation, FIFO buffer with several operating modes, temperature measurement, etc.

[Learn More]

Driver Click

0

Driver Click features an IC with seven integrated high-current sink drivers, which can be used to drive a wide range of loads via simple parallel interface. These integrated drivers use high-efficiency MOSFETs for improved thermal performance.

[Learn More]