We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.14
mikroSDK Library: 2.0.0.0
Category: DAC
Downloaded: 208 times
Not followed.
License: MIT license
DAC 8 Click is a compact add-on board that contains a fully-featured, general-purpose voltage-output digital-to-analog converter.
Do you want to subscribe in order to receive notifications regarding "DAC 8 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "DAC 8 Click" changes.
Do you want to report abuse regarding "DAC 8 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4455_dac_8_click.zip [262.95KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
DAC 8 Click is a compact add-on board that contains a fully-featured, general-purpose voltage-output digital-to-analog converter.
We provide a library for the Dac8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for Dac8 Click driver.
Config Object Initialization function.
void dac8_cfg_setup ( dac8_cfg_t *cfg );
Initialization function.
DAC8_RETVAL dac8_init ( dac8_t ctx, dac8_cfg_t cfg );
The function set configuration of the DAC8554, 16-bit, quad-channel, ultra-low glitch, voltage
output digital-to-analog converter on DAC 8 Click board.
void dac8_device_config ( dac8_t *ctx, dac8_cfg_data_t cfg_data );
The function load DAC s are simultaneously updated with the contents of the corresponding data
buffers. Used as a positive edge triggered timing signal for asynchronous DAC updates. Data
buffers of all channels must be loaded with desired data before call Load DAC function.
void dac8_load_dac ( dac8_t *ctx );
The function set Vref ( mV ) by write 12-bit to the DAC data register of the DAC60501, 16-Bit,
14-Bit, and 12-Bit, 1-LSB INL, Voltage-Output DACs
With Precision Internal Reference on DAC 8 Click board.
DAC8_RETVAL dac8_set_vref ( dac8_t *ctx, uint16_t vref_mv );
This Click carries 12-bit buffered Digital-to-Analog Converter. It converts digital value to the corresponding voltage level using external voltage reference.
The demo application is composed of two sections :
Initialization driver enables - I2C. Configure DAC60501: executes call software reset, disable sync and internal reference and disable Power-down mode, the set reference voltage is internally divided by a factor of 2, amplifier for corresponding DAC has a gain of 2. Initialization driver enables - SPI, enable DAC8554, also write log.
void application_init ( void )
{
log_cfg_t log_cfg;
dac8_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
dac8_cfg_setup( &cfg );
DAC8_MAP_MIKROBUS( cfg, MIKROBUS_1 );
dac8_init( &dac8, &cfg, DAC8_MASTER_I2C );
log_printf( &logger, "---------------------\r\n" );
log_printf( &logger, " I2C driver init. \r\n" );
Delay_ms ( 100 );
log_printf( &logger, "---------------------\r\n" );
log_printf( &logger, " DAC60501 \r\n" );
log_printf( &logger, "---------------------\r\n" );
log_printf( &logger, " Soft reset \r\n" );
dac8_soft_reset( &dac8 );
Delay_ms ( 100 );
log_printf( &logger, "---------------------\r\n" );
log_printf( &logger, " Disable sync. mode \r\n" );
dac8_enable_sync( &dac8, DAC8_SYNC_DISABLE );
Delay_ms ( 100 );
log_printf( &logger, "---------------------\r\n" );
log_printf( &logger, " Set config.: \r\n" );
log_printf( &logger, " Enable: \r\n" );
log_printf( &logger, " Internal reference \r\n" );
log_printf( &logger, " Disable: \r\n" );
log_printf( &logger, " Power-down mode \r\n" );
dac8_set_config( &dac8, DAC8_CONFIG_REF_PWDWN_ENABLE, DAC8_CONFIG_DAC_PWDWN_DISABLE );
Delay_ms ( 100 );
log_printf( &logger, "---------------------\r\n" );
log_printf( &logger, " Vref divided by 2 \r\n" );
log_printf( &logger, " Set DAC gain of 2 \r\n" );
dac8_set_gain( &dac8, DAC8_GAIN_REF_DIV_2, DAC8_GAIN_BUFF_GAIN_1 );
Delay_ms ( 100 );
log_printf( &logger, "---------------------\r\n" );
log_printf( &logger, " Set Vref ~ 2500 mV \r\n" );
dac8_set_vref( &dac8, 2500 );
Delay_ms ( 1000 );
dac8_init( &dac8, &cfg, DAC8_MASTER_SPI );
log_printf( &logger, "---------------------\r\n" );
log_printf( &logger, " SPI driver init. \r\n" );
Delay_ms ( 1000 );
log_printf( &logger, "---------------------\r\n" );
log_printf( &logger, " DAC8554 \r\n" );
log_printf( &logger, "---------------------\r\n" );
log_printf( &logger, " Enable DAC8554 \r\n" );
dac8_device_enable( &dac8, DAC8_DAC8554_ENABLE );
Delay_ms ( 100 );
}
This is an example that demonstrates the use of the DAC 8 Click board. DAC 8 board changeing output values: Channel A ~ 2500 mV, Channel B ~ 1250 mV, Channel C ~ 625 mV, Channel D ~ 312 mV. All data logs write on USB uart changes every 5 sec.
void application_task ( void )
{
log_printf( &logger, "---------------------\r\n" );
cfg_dac.addr = DAC8_ADDR_DEFAULT;
cfg_dac.ctrl_upd_an_out = DAC8_CTRL_UPD_AN_OUT_SINGLE_CH_STORE;
cfg_dac.dac_sel = DAC8_DAC_SEL_CH_A;
cfg_dac.pwr_mode = DAC8_PWR_MODE_POWER_UP;
cfg_dac.dac_val = 0xFFFF;
log_printf( &logger, " Channel A ~ 2500 mV \r\n" );
dac8_device_config( &dac8, cfg_dac );
dac8_load_dac( &dac8 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "---------------------\r\n" );
cfg_dac.addr = DAC8_ADDR_DEFAULT;
cfg_dac.ctrl_upd_an_out = DAC8_CTRL_UPD_AN_OUT_SINGLE_CH_STORE;
cfg_dac.dac_sel = DAC8_DAC_SEL_CH_B;
cfg_dac.pwr_mode = DAC8_PWR_MODE_POWER_UP;
cfg_dac.dac_val = 0x7FFF;
log_printf( &logger, " Channel B ~ 1250 mV \r\n" );
dac8_device_config( &dac8, cfg_dac );
dac8_load_dac( &dac8 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "---------------------\r\n" );
cfg_dac.addr = DAC8_ADDR_DEFAULT;
cfg_dac.ctrl_upd_an_out = DAC8_CTRL_UPD_AN_OUT_SINGLE_CH_STORE;
cfg_dac.dac_sel = DAC8_DAC_SEL_CH_C;
cfg_dac.pwr_mode = DAC8_PWR_MODE_POWER_UP;
cfg_dac.dac_val = 0x3FFF;
log_printf( &logger, " Channel C ~ 625 mV \r\n" );
dac8_device_config( &dac8, cfg_dac );
dac8_load_dac( &dac8 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "---------------------\r\n" );
cfg_dac.addr = DAC8_ADDR_DEFAULT;
cfg_dac.ctrl_upd_an_out = DAC8_CTRL_UPD_AN_OUT_SINGLE_CH_STORE;
cfg_dac.dac_sel = DAC8_DAC_SEL_CH_D;
cfg_dac.pwr_mode = DAC8_PWR_MODE_POWER_UP;
cfg_dac.dac_val = 0x1FFF;
log_printf( &logger, " Channel D ~ 312 mV\r\n" );
dac8_device_config( &dac8, cfg_dac );
dac8_load_dac( &dac8 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.