We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.16
mikroSDK Library: 2.0.0.0
Category: LoRa
Downloaded: 235 times
Not followed.
License: MIT license
LR 4 Click is a compact add-on board that contains a long-range transceiver. This board features the 32001353, RF technology-based SRD transceiver, which operates at a frequency of 868MHz from Mipot.
Do you want to subscribe in order to receive notifications regarding "LR 4 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "LR 4 Click" changes.
Do you want to report abuse regarding "LR 4 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4490_lr_4_click.zip [614.25KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for dsPIC XC16 |
|
LR 4 Click is a compact add-on board that contains a long-range transceiver. This board features the 32001353, RF technology-based SRD transceiver, which operates at a frequency of 868MHz from Mipot.
We provide a library for the LR4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for LR4 Click driver.
Config Object Initialization function.
void lr4_cfg_setup ( lr4_cfg_t *cfg );
Initialization function.
LR4_RETVAL lr4_init ( lr4_t ctx, lr4_cfg_t cfg );
Function performs the recovery of EEPROM default values.
LR4_RETVAL lr4_factory_reset ( lr4_t *ctx );
Function writes data to EEPROM.
LR4_RETVAL lr4_write_eeprom ( lr4_t ctx, uint8_t address, uint8_t n_bytes, uint8_t data_in );
Function performs the transmission of radio frames.
LR4_RETVAL lr4_tx_message ( lr4_t ctx, lr4_tx_msg_t tx_msg );
This example reads and processes data from LR 4 clicks.
The demo application is composed of two sections :
Initializes the driver, and resets the Click board to factory default configuration. Then performs a group of commands for getting the FW version, the serial number, and the DevEUI. After that executes the join activation by personalization command.
void application_init ( void )
{
log_cfg_t log_cfg;
lr4_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
lr4_cfg_setup( &cfg );
LR4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
lr4_init( &lr4, &cfg );
Delay_ms ( 100 );
lr4_set_ind_handler( &lr4, response_handler );
log_printf( &logger, "Hard reset!\r\n" );
lr4_hard_reset( &lr4 );
log_printf( &logger, "------------------------\r\n" );
log_printf( &logger, "Factory reset!\r\n" );
lr4_factory_reset( &lr4 );
log_printf( &logger, "------------------------\r\n" );
Delay_ms ( 1000 );
uint32_t tmp_data = 0;
log_printf( &logger, "Get FW version!\r\n" );
lr4_get_fw_version( &lr4, &tmp_data );
log_printf( &logger, "FW vesion is: 0x%.8LX\r\n", tmp_data );
log_printf( &logger, "------------------------\r\n" );
Delay_ms ( 1000 );
log_printf( &logger, "Get Serial Number!\r\n" );
lr4_get_serial_no( &lr4, &tmp_data );
log_printf( &logger, "Serial Number is: 0x%.8LX\r\n", tmp_data );
log_printf( &logger, "------------------------\r\n" );
Delay_ms ( 1000 );
uint8_t tmp_buf[ 8 ] = { 0 };
log_printf( &logger, "Get Dev EUI!\r\n" );
lr4_get_dev_eui( &lr4, tmp_buf );
log_printf( &logger, "Dev EUI is: 0x%.2X%.2X%.2X%.2X%.2X%.2X%.2X%.2X\r\n", ( uint16_t ) tmp_buf[ 7 ],
( uint16_t ) tmp_buf[ 6 ],
( uint16_t ) tmp_buf[ 5 ],
( uint16_t ) tmp_buf[ 4 ],
( uint16_t ) tmp_buf[ 3 ],
( uint16_t ) tmp_buf[ 2 ],
( uint16_t ) tmp_buf[ 1 ],
( uint16_t ) tmp_buf[ 0 ] );
log_printf( &logger, "------------------------\r\n" );
Delay_ms ( 1000 );
log_printf( &logger, "Join Network!\r\n" );
lr4_join_network( &lr4, LR4_JOIN_ACTIVATION_BY_PERSONALIZATION_MODE );
log_printf( &logger, "------------------------\r\n" );
Delay_ms ( 1000 );
}
Checks the activation and session status and displays the results on the USB UART.
void application_task ( void )
{
log_printf( &logger, "Get Activation Status!\r\n" );
uint8_t status = lr4_get_status( &lr4, LR4_GET_ACTIVATION_MODE );
log_printf( &logger, "Status: " );
switch ( status )
{
case LR4_STATUS_NOT_ACTIVATED :
{
log_printf( &logger, "Not activated.\r\n" );
break;
}
case LR4_STATUS_JOINING :
{
log_printf( &logger, "Joining...\r\n" );
break;
}
case LR4_STATUS_JOINED :
{
log_printf( &logger, "Joined.\r\n" );
break;
}
case LR4_STATUS_MAC_ERROR :
{
log_printf( &logger, "MAC ERROR.\r\n" );
break;
}
default :
{
break;
}
}
log_printf( &logger, "------------------------\r\n" );
Delay_ms ( 1000 );
log_printf( &logger, "Get Session Status!\r\n" );
status = lr4_get_status( &lr4, LR4_GET_SESSION_STATUS_MODE );
log_printf( &logger, "Status: " );
switch ( status )
{
case LR4_STATUS_IDLE :
{
log_printf( &logger, "Idle.\r\n" );
break;
}
case LR4_STATUS_BUSY :
{
log_printf( &logger, "Busy (LR session running).\r\n" );
break;
}
case LR4_STATUS_DEV_NOT_ACTIVATED :
{
log_printf( &logger, "Device not activated.\r\n" );
break;
}
case LR4_STATUS_DELAYED :
{
log_printf( &logger, "Delayed (LR session paused due to Duty-cycle).\r\n" );
break;
}
default :
{
break;
}
}
log_printf( &logger, "------------------------\r\n" );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.