TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141697 times)
  2. FAT32 Library (74777 times)
  3. Network Ethernet Library (59218 times)
  4. USB Device Library (49226 times)
  5. Network WiFi Library (44999 times)
  6. FT800 Library (44536 times)
  7. GSM click (31200 times)
  8. mikroSDK (30103 times)
  9. microSD click (27586 times)
  10. PID Library (27540 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Nano LR Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: LoRa

Downloaded: 472 times

Not followed.

License: MIT license  

Nano LR Click is a compact add-on board that contains a long-range transceiver. This board features the EMB-LR1276S, RF technology-based SRD transceiver, which operates at a frequency of 868MHz from Embit.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Nano LR Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Nano LR Click" changes.

Do you want to report abuse regarding "Nano LR Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Nano LR Click

Nano LR Click is a compact add-on board that contains a long-range transceiver. This board features the EMB-LR1276S, RF technology-based SRD transceiver, which operates at a frequency of 868MHz from Embit.

nanolr_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jun 2020.
  • Type : UART type

Software Support

We provide a library for the NanoLR Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for NanoLR Click driver.

Standard key functions :

  • Config Object Initialization function.

    void nanolr_cfg_setup ( nanolr_cfg_t *cfg );

  • Initialization function.

    NANOLR_RETVAL nanolr_init ( nanolr_t ctx, nanolr_cfg_t cfg );

  • Click Default Configuration function.

    void nanolr_default_cfg ( nanolr_t *ctx );

Example key functions :

  • This function sends data command depends on the chosen network protocol.

    void nanolr_send_data ( nanolr_t ctx, uint8_t tx_data, uint8_t length );

  • This function reads response bytes from the device and sets flag after each received byte.

    void nanolr_uart_isr ( nanolr_t *ctx );

  • This function checks if the response is ready.

    uint8_t nanolr_rsp_rdy ( nanolr_t *ctx );

Examples Description

This example reads and processes data from Nano LR clicks.

The demo application is composed of two sections :

Application Init

Initializes the driver, and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;
    nanolr_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    nanolr_cfg_setup( &cfg );
    NANOLR_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    nanolr_init( &nanolr, &cfg );

    nanolr_default_cfg( &nanolr );

    log_printf( &logger,  "----  Nano LR Click ----\r\n" );

#ifdef DEMO_APP_RECEIVER
    log_printf( &logger,  "---- RECEIVER MODE ----\r\n" );
#endif

#ifdef DEMO_APP_TRANSMITTER
    log_printf( &logger,  "---- TRANSMITER MODE ----\r\n" );
#endif 
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Application Task

Depending on the selected mode, it reads all the received data or sends a desired message every 2 seconds. All data is being displayed on the USB UART.


void application_task ( void )
{    
#ifdef DEMO_APP_RECEIVER
    nanolr_process( );
#endif

#ifdef DEMO_APP_TRANSMITTER
    nanolr_send_data( &nanolr, TEXT_TO_SEND, strlen( TEXT_TO_SEND ) );
    log_printf( &logger, "The message \"%s\" has been sent!\r\n", ( uint8_t * ) TEXT_TO_SEND );
    log_printf( &logger, "------------------------------------------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#endif
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.NanoLR

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

8x8 B Click

0

8x8 B Click is a 64 LED matrix display Click board™, composed of SMD LEDs organized in 8 rows by 8 columns. It has a digital brightness control in 16 steps, it can control every LED in the display matrix independently, it blanks the display on power up to eliminate glitches and it requires a single resistor to control the current through all the LEDs at once, which simplifies the design. 8x8 B Click uses a fast SPI communication protocol, allowing fast display response and no lag.

[Learn More]

GainAMP 3 Click

0

GainAMP 3 Click is a compact add-on board that contains a 4-channel programmable gain amplifier. This board features the ADA4254, a zero drift, high voltage, programmable gain instrumentation amplifier from Analog Devices. It features 12 binary weighted gains and three scaling gain options resulting in 36 possible gain settings. It comes with an input multiplexer providing ±60V protection to the high impedance inputs of the amplifier and an excitation current source output available to bias sensors such as resistance temperature detectors (RTDs).

[Learn More]

Barometer 10 Click

0

Barometer 10 Click is a compact add-on board that measures air pressure in a specific environment. This board features the LPS28DFW, an ultra-compact piezoresistive absolute pressure sensor that functions as a digital output barometer from STMicroelectronics. The LPS28DFW comprises a sensing element and an IC chip for signal processing in one package, converts pressure into a 24-bit digital value, and sends the information via I2C serial interface. It has a selectable dual full-scale absolute pressure range of up to 1260hPa and 4060hPa, with an absolute pressure accuracy of 0.5hPa over a wide operating temperature range.

[Learn More]