We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.15
mikroSDK Library: 2.0.0.0
Category: LED matrix
Downloaded: 317 times
Not followed.
License: MIT license
8x8 G Click is a 64 LED matrix display Click board™, composed of SMD LEDs organized in 8 rows by 8 columns. It has a digital brightness control in 16 steps, it can control every LED in the display matrix independently, it blanks the display on power up to eliminate glitches and it requires a single resistor to control the current through all the LEDs at once, which simplifies the design. 8x8 G Click uses a fast SPI communication protocol, allowing fast display response and no lag.
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4522_8x8_g_click.zip [609.83KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
8x8 G Click is a 64 LED matrix display Click board™, composed of SMD LEDs organized in 8 rows by 8 columns. It has a digital brightness control in 16 steps, it can control every LED in the display matrix independently, it blanks the display on power up to eliminate glitches and it requires a single resistor to control the current through all the LEDs at once, which simplifies the design. 8x8 G Click uses a fast SPI communication protocol, allowing fast display response and no lag.
We provide a library for the 8x8G Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for 8x8G Click driver.
c8x8g_cfg_setup
Config Object Initialization function.
void c8x8g_cfg_setup ( c8x8g_cfg_t *cfg );
c8x8g_init
Initialization function.
err_t c8x8g_init ( c8x8g_t *ctx, c8x8g_cfg_t *cfg );
c8x8g_default_cfg
Click Default Configuration function.
void c8x8g_default_cfg ( c8x8g_t *ctx );
c8x8g_write_cmd
This function writes a desired number of data bytes starting from the selected register by using SPI serial interface.
void c8x8g_write_cmd ( c8x8g_t *ctx, uint8_t cmd, uint8_t tx_data );
c8x8g_display_refresh
The function switches off all LEDs.
void c8x8g_display_refresh ( c8x8g_t *ctx );
c8x8g_display_byte
This function displayes one character to the display.
void c8x8g_display_byte ( c8x8g_t *ctx, char tx_byte );
This demo example shows a drawing of Image, new create string and character on the screen.
The demo application is composed of two sections :
Configuring clicks and log objects. Settings the Click in the default configuration.
void application_init ( void ) {
log_cfg_t log_cfg; /**< Logger config object. */
c8x8g_cfg_t c8x8g_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
c8x8g_cfg_setup( &c8x8g_cfg );
C8X8G_MAP_MIKROBUS( c8x8g_cfg, MIKROBUS_1 );
err_t init_flag = c8x8g_init( &c8x8g, &c8x8g_cfg );
if ( init_flag == SPI_MASTER_ERROR ) {
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
c8x8g_default_cfg ( &c8x8g );
log_info( &logger, " Application Task " );
Delay_1sec( );
}
Shows one byte, then scrolls the string and image, every 1 sec.
void application_task ( void ) {
c8x8g_display_byte( &c8x8g, demo_char );
Delay_ms ( 1000 );
c8x8g_display_string( &c8x8g, &demo_string[ 0 ] );
Delay_ms ( 1000 );
c8x8g_display_image( &c8x8g, &demo_img_on[ 0 ] );
Delay_ms ( 500 );
c8x8g_display_image( &c8x8g, &demo_img_off[ 0 ] );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.
I2C Isolator 7 Click is a compact add-on board that offers completely isolated bidirectional communication. This board features the ADuM1252, an ultra-low power, bidirectional I2C isolator from Analog Devices. It can isolate I2C bidirectional data transfer of up to 2MHz SCL and bidirectional SCL for advanced bus topologies, and it supports clock stretching and multiple controllers across the isolation barrier. It also features the enhanced hot-swappable side 2 IO.
[Learn More]Alcohol Click has a high sensitivity to alcohol and it can be used to detect alcohol in concentrations from 0.04 to 4mg/l.Alcohol Click carries an MQ-3 Semiconductor sensor for alcohol. The Click is designed to run on a 5V power supply only. It communicates with the target microcontroller through the AN pin on the mikroBUS™ line.
[Learn More]Analog MUX 5 Click is a compact add-on board that switches one of many inputs to one output. This board features the MAX4634, a fast, low-voltage four-channel CMOS analog multiplexer from Analog Devices. This low-voltage multiplexer operates from both mikroBUS™ power rails and features 4Ω maximum ON-resistance (RON). CMOS switch construction allows the processing of analog signals within the supply voltage range. It is also characterized by an easy way of management, only through a couple of signals from the mikroBUS™ socket. This Click board™ is suitable for various applications, from industrial and instrumentation to medical, consumer, communications, and more.
[Learn More]You have unsaved changes. If you choose to leave all changes will be discarded.
Do you want to subscribe in order to receive notifications regarding "8x8 G Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "8x8 G Click" changes.
Do you want to report abuse regarding "8x8 G Click".