We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.9
mikroSDK Library: 2.0.0.0
Category: Current sensor
Downloaded: 138 times
Not followed.
License: MIT license
Hall Current 8 Click is a compact add-on board that contains a precise solution for AC/DC current sensing. This board features the TLI4971-A120T5, a high-precision coreless current sensor for industrial/consumer applications from Infineon Technologies. The TLI4971-A120T5 has an analog interface and two fast overcurrent detection outputs, which support the protection of the power circuitry. Galvanic isolation is also provided according to the magnetic sensing principle. Infineon's monolithic Hall technology enables accurate and highly linear measurement of currents with a full scale up to 120A. This Click board™ is suitable for AC/DC current measurement applications: electrical drives, general-purpose inverters, chargers, current monitoring, overload, over-current detection, and many more.
Do you want to subscribe in order to receive notifications regarding "Hall Current 8 120A Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Hall Current 8 120A Click" changes.
Do you want to report abuse regarding "Hall Current 8 120A Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4536_hall_current_8_1.zip [487.70KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Hall Current 8 Click is a compact add-on board that contains a precise solution for AC/DC current sensing. This board features the TLI4971-A120T5, a high-precision coreless current sensor for industrial/consumer applications from Infineon Technologies. The TLI4971-A120T5 has an analog interface and two fast overcurrent detection outputs, which support the protection of the power circuitry. Galvanic isolation is also provided according to the magnetic sensing principle. Infineon's monolithic Hall technology enables accurate and highly linear measurement of currents with a full scale up to 120A. This Click board™ is suitable for AC/DC current measurement applications: electrical drives, general-purpose inverters, chargers, current monitoring, overload, over-current detection, and many more.
We provide a library for the HallCurrent8120A Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for HallCurrent8120A Click driver.
hallcurrent8120a_cfg_setup
Config Object Initialization function.
void hallcurrent8120a_cfg_setup ( hallcurrent8120a_cfg_t *cfg );
hallcurrent8120a_init
Initialization function.
err_t hallcurrent8120a_init ( hallcurrent8120a_t *ctx, hallcurrent8120a_cfg_t *cfg );
hallcurrent8120a_calibration
This function sets the calibration value into the offset data from context object of the TLI4971 high precision coreless current sensor on Hall Current 8 120A Click board.
err_t hallcurrent8120a_calibration ( hallcurrent8120a_t *ctx );
hallcurrent8120a_get_voltage
This function reads results of AD conversion of the AN pin and converts them to proportional voltage level.
err_t hallcurrent8120a_get_voltage ( hallcurrent8120a_t *ctx, float *avr_voltage );
hallcurrent8120a_get_current
This function reads results of AD conversion of the AN pin and converts them to proportional current level.
err_t hallcurrent8120a_get_current ( hallcurrent8120a_t *ctx, float *current );
This library contains API for Hall Current 8 120A Click driver. The library initializes and defines the ADC drivers. The library also includes a function for calibration, current measurement and overcurrent detection.
The demo application is composed of two sections :
Initializes ADC driver, calibrate AD conversion of the AN pin and start to write log.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
hallcurrent8120a_cfg_t hallcurrent8120a_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
hallcurrent8120a_cfg_setup( &hallcurrent8120a_cfg );
HALLCURRENT8120A_MAP_MIKROBUS( hallcurrent8120a_cfg, MIKROBUS_1 );
if ( ADC_ERROR == hallcurrent8120a_init( &hallcurrent8120a, &hallcurrent8120a_cfg ) )
{
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
Delay_ms ( 1000 );
log_printf( &logger, "---------------------------\r\n" );
log_printf( &logger, " Turn OFF the power supply \r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "---------------------------\r\n" );
log_printf( &logger, " Start Calibration \r\n" );
hallcurrent8120a_calibration ( &hallcurrent8120a );
Delay_ms ( 1000 );
log_printf( &logger, "---------------------------\r\n");
log_printf( &logger, " Turn ON the power supply \r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, "---------------------------\r\n");
log_printf( &logger, " Start measurements : \r\n");
log_printf( &logger, "---------------------------\r\n");
}
This is an example that demonstrates the use of the Hall Current 8 120A Click board. In this example, we read and display current data [A], AN pin voltage level [V]. Results are being sent to the Usart Terminal where you can track their changes.
void application_task ( void )
{
float current = 0;
float avg_voltage = 0;
if ( HALLCURRENT8120A_OK == hallcurrent8120a_get_current ( &hallcurrent8120a, ¤t ) )
{
log_printf( &logger, " Current : %.2f [A]\r\n", current );
}
if ( HALLCURRENT8120A_OK == hallcurrent8120a_get_voltage ( &hallcurrent8120a, &avg_voltage ) )
{
log_printf( &logger, " AN pin voltage : %.2f [V]\r\n", avg_voltage );
}
log_printf( &logger, "---------------------------\r\n");
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.