TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141926 times)
  2. FAT32 Library (75070 times)
  3. Network Ethernet Library (59370 times)
  4. USB Device Library (49362 times)
  5. Network WiFi Library (45172 times)
  6. FT800 Library (44742 times)
  7. GSM click (31324 times)
  8. mikroSDK (30276 times)
  9. microSD click (27690 times)
  10. PID Library (27580 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Button PLAY Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: Capacitive

Downloaded: 325 times

Not followed.

License: MIT license  

Button PLAY Click is a very interesting interactive gadget on a Click board™. It is an integrated capacitive touch sensor display in the form of a button. By utilizing an advanced capacitive touch sensing technology, the CTHS15CIC05ARROW sensor can successfully replace the traditional mechanical button, allowing very simplified yet reliable user interfaces to be developed. Besides the touch detection, this sensor also features a green arrow icon with backlight, which makes the Click board™ very useful for building various stylized and visually appealing interfaces.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Button PLAY Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Button PLAY Click" changes.

Do you want to report abuse regarding "Button PLAY Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Button Play Click

Button PLAY Click is a very interesting interactive gadget on a Click board™. It is an integrated capacitive touch sensor display in the form of a button. By utilizing an advanced capacitive touch sensing technology, the CTHS15CIC05ARROW sensor can successfully replace the traditional mechanical button, allowing very simplified yet reliable user interfaces to be developed. Besides the touch detection, this sensor also features a green arrow icon with backlight, which makes the Click board™ very useful for building various stylized and visually appealing interfaces.

button_play_click.png

Click Product page


Click library

  • Author : Nikola Peric
  • Date : Feb 2022.
  • Type : GPIO type

Software Support

We provide a library for the ButtonPlay Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for ButtonPlay Click driver.

Standard key functions :

  • buttonplay_cfg_setup Config Object Initialization function.

    void buttonplay_cfg_setup ( buttonplay_cfg_t *cfg );
  • buttonplay_init Initialization function.

    err_t buttonplay_init ( buttonplay_t *ctx, buttonplay_cfg_t *cfg );

Example key functions :

  • buttonplay_pwm_stop This function stops the PWM moudle output.
    
    err_t buttonplay_pwm_stop ( buttonplay_t *ctx );

- `buttonplay_pwm_start` This function starts the PWM moudle output.
```c
err_t buttonplay_pwm_start ( buttonplay_t *ctx );
  • buttonplay_get_button_state This function reads the digital signal from the INT pin which tells us whether the button has been pressed or not.
    uint8_t buttonplay_get_button_state ( buttonplay_t *ctx );

Example Description

This example showcases how to initialize and use the whole family of Button clicks. One library is used for every single one of them. They are simple touch detectors which send a pressed/released signal and receive a PWM output which controls the backlight on the button.

The demo application is composed of two sections :

Application Init

This function initializes and configures the logger and Click modules.


void application_init ( void ) 
{
    log_cfg_t log_cfg;                 /**< Logger config object. */
    buttonplay_cfg_t buttonplay_cfg;   /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    buttonplay_cfg_setup( &buttonplay_cfg );
    BUTTONPLAY_MAP_MIKROBUS( buttonplay_cfg, MIKROBUS_1 );
    err_t init_flag  = buttonplay_init( &buttonplay, &buttonplay_cfg );
    if ( PWM_ERROR == init_flag )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    Delay_ms ( 500 );

    buttonplay_set_duty_cycle ( &buttonplay, 0.0 );
    buttonplay_pwm_start( &buttonplay );

    log_info( &logger, " Application Task " );
}

Application Task

This example first increases the backlight on the button and then decreases the intensity of the backlight. When the button is touched, reports the event in the console using UART communication.


void application_task ( void ) 
{
    static float duty_cycle;
    static uint8_t button_state;
    static uint8_t button_state_old;

    button_state = buttonplay_get_button_state( &buttonplay );

    if ( button_state && ( button_state != button_state_old ) ) 
    {
        log_printf( &logger, " <-- Button pressed --> \r\n" );
        for ( uint8_t n_cnt = 1; n_cnt <= 100; n_cnt++  )
        {
            duty_cycle = ( float ) n_cnt ;
            duty_cycle /= 100;
            buttonplay_set_duty_cycle( &buttonplay, duty_cycle );
            Delay_ms ( 10 );
        }
        button_state_old = button_state;
    } 
    else if ( !button_state && ( button_state != button_state_old ) ) 
    {
        for ( uint8_t n_cnt = 100; n_cnt > 0; n_cnt-- )
        {
            duty_cycle = ( float ) n_cnt ;
            duty_cycle /= 100;
            buttonplay_set_duty_cycle( &buttonplay,  duty_cycle );
            Delay_ms ( 10 );
        }
        button_state_old = button_state;
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ButtonPlay

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Boost 3 Click

0

Boost 3 Click is a compact add-on board that contains a boost converter with an integrated current mirror function. This board features the TPS61391, a 700-kHz pulse-width modulating (PWM) Step-Up converter with a 70V switch FET with an input voltage up to 5.5V from Texas Instruments.

[Learn More]

SRAM Click

0

SRAM Click presents additional 1Mbit SRAM memory that can be added to device.

[Learn More]

Hall Current 21 Click

0

Hall Current 21 Click is a compact add-on board designed for precise current measurement across a wide frequency range, ideal for fast and accurate monitoring applications. This board features the ACS37030, a galvanically-isolated current sensor from Allegro Microsystems. It provides bidirectional current sensing with a range of ±65A and a sensitivity of 20.3mV/A, offering high isolation of 3500VRMS and a working voltage of up to 840VRMS. It also features low noise and a wide operating bandwidth, making it suitable for high-speed switching current and control loop monitoring. This Click board™ is perfect for power supplies in servers, data centers, and solar DC-DC converters.

[Learn More]