TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141701 times)
  2. FAT32 Library (74778 times)
  3. Network Ethernet Library (59220 times)
  4. USB Device Library (49226 times)
  5. Network WiFi Library (44999 times)
  6. FT800 Library (44536 times)
  7. GSM click (31200 times)
  8. mikroSDK (30103 times)
  9. microSD click (27586 times)
  10. PID Library (27543 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

IrDA 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.9

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 272 times

Not followed.

License: MIT license  

IrDA2 Click features the TFDU4101 infrared transceiver module as well as MCP2120 infrared encoder/decoder from Microchip connected with the 7.3728 MHz external crystal. The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target board via UART interface and the following mikroBUS™ pins: AN, RST, CS.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "IrDA 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "IrDA 2 Click" changes.

Do you want to report abuse regarding "IrDA 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


IrDA 2 Click

IrDA2 Click features the TFDU4101 infrared transceiver module as well as MCP2120 infrared encoder/decoder from Microchip connected with the 7.3728 MHz external crystal. The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target board via UART interface and the following mikroBUS™ pins: AN, RST, CS.

irda2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jun 2023.
  • Type : UART type

Software Support

We provide a library for the IrDA2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for IrDA2 Click driver.

Standard key functions :

  • irda2_cfg_setup Config Object Initialization function.

    void irda2_cfg_setup ( irda2_cfg_t *cfg );
  • irda2_init Initialization function.

    err_t irda2_init ( irda2_t *ctx, irda2_cfg_t *cfg );
  • irda2_default_cfg Click Default Configuration function.

    void irda2_default_cfg ( irda2_t *ctx );

Example key functions :

  • irda2_generic_write This function writes a desired number of data bytes by using UART serial interface.

    err_t irda2_generic_write ( irda2_t *ctx, uint8_t *data_in, uint16_t len )
  • irda2_generic_read This function reads a desired number of data bytes by using UART serial interface.

    err_t irda2_generic_read ( irda2_t *ctx, uint8_t *data_out, uint16_t len );
  • irda2_reset This function executes a device reset operation.

    void irda2_reset( irda2_t *ctx );

Example Description

This example demonstrates the use of an IrDA 2 Click board by showing the communication between the two Click boards.

The demo application is composed of two sections :

Application Init

Initalizes device and makes an initial log.


void application_init( void ) 
{
    irda2_cfg_t irda2_cfg;
    log_cfg_t logger_cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( logger_cfg );
    log_init( &logger, &logger_cfg );
    log_info( &logger, " Application Init " );

    //  Click initialization.
    irda2_cfg_setup( &irda2_cfg );
    IRDA2_MAP_MIKROBUS( irda2_cfg, MIKROBUS_1 );
    if ( UART_ERROR == irda2_init( &irda2, &irda2_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    irda2_default_cfg( &irda2 );
    irda2_reset( &irda2 );

#ifdef DEMO_APP_TRANSMITTER
    log_printf( &logger, " Application Mode: Transmitter\r\n" );
#else
    log_printf( &logger, " Application Mode: Receiver\r\n" );
#endif
    log_info( &logger, " Application Task " );
}

Application Task

Depending on the selected application mode, it reads all the received data or sends the desired text message once per second.


void application_task( void ) 
{
#ifdef DEMO_APP_TRANSMITTER
    irda2_generic_write( &irda2, DEMO_TEXT_MESSAGE, strlen( DEMO_TEXT_MESSAGE ) );
    log_printf( &logger, "%s", ( char * ) DEMO_TEXT_MESSAGE );
    Delay_ms ( 1000 ); 
#else
    uint8_t rx_byte = 0;
    if ( 1 == irda2_generic_read( &irda2, &rx_byte, 1 ) )
    {
       log_printf( &logger, "%c", rx_byte );
    }
#endif
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.IrDA2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

EMG click

6

EMG click measures the electrical activity produced by the skeletal muscles. The click carries MCP609 operational amplifier and MAX6106 micropower voltage reference. EMG click is designed to run on a 5V power supply. The click boardâ„¢ has an analog output (AN pin).

[Learn More]

Current 12 Click

0

Current 12 Click is a compact add-on board designed for high-precision monitoring of current, voltage, power, and temperature in various applications. This board features the TSC1641, a 60V 16-bit power monitor with an I2C interface from STMicroelectronics. The TSC1641 consist of a high-precision 16-bit dual-channel sigma-delta ADC, capable of measuring high-side, low-side, and bidirectional currents with a programmable conversion time ranging from 128µs to 32.7ms. It supports 2-wire I2C communication with clock frequencies up to 1MHz, and includes an alert interrupt pin for setting thresholds on voltage, current, power, and temperature.

[Learn More]

Thunder Click

0

Thunder Click features AS3935 lightning sensor as well as MA5532 coil antenna. It detects the presence and proximity of potentially hazardous lightning activity in the vicinity and provides estimated distance to the center of the storm. It can also provide information on the noise level. Thunder Click communicates with the target board microcontroller via SPI and INT lines. The board is designed to use 3.3V or 5V power supply. LED diode (GREEN) indicates the presence of power supply.

[Learn More]