TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (388 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140321 times)
  2. FAT32 Library (72727 times)
  3. Network Ethernet Library (57852 times)
  4. USB Device Library (47995 times)
  5. Network WiFi Library (43569 times)
  6. FT800 Library (43005 times)
  7. GSM click (30169 times)
  8. mikroSDK (28798 times)
  9. PID Library (27071 times)
  10. microSD click (26586 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LDC 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Inductance

Downloaded: 248 times

Not followed.

License: MIT license  

LDC 2 Click is a compact add-on board that measures inductance change which a conductive target causes when it moves into the inductor's AC magnetic field. This board features the LDC1041, inductance-to-digital converter (LDC) for inductive sensing solutions from Texas Instruments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LDC 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LDC 2 Click" changes.

Do you want to report abuse regarding "LDC 2 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


LDC 2 Click

LDC 2 Click is a compact add-on board that measures inductance change which a conductive target causes when it moves into the inductor's AC magnetic field. This board features the LDC1041, inductance-to-digital converter (LDC) for inductive sensing solutions from Texas Instruments.

ldc2_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jul 2021.
  • Type : SPI type

Software Support

We provide a library for the LDC2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for LDC2 Click driver.

Standard key functions :

  • ldc2_cfg_setup Config Object Initialization function.

    void ldc2_cfg_setup ( ldc2_cfg_t *cfg );
  • ldc2_init Initialization function.

    err_t ldc2_init ( ldc2_t *ctx, ldc2_cfg_t *cfg );
  • ldc2_default_cfg Click Default Configuration function.

    err_t ldc2_default_cfg ( ldc2_t *ctx );

Example key functions :

  • ldc2_measure_resonance_impedance This function measures the resonance impedance and proximity data.

    err_t ldc2_measure_resonance_impedance ( ldc2_t *ctx, uint8_t *prox_data, float *rp_data );
  • ldc2_measure_inductance This function measures the inductance and sensor frequency.

    err_t ldc2_measure_inductance ( ldc2_t *ctx, float *freq, float *inductance );
  • ldc2_get_sensor_frequency This function reads and calculates the sensor frequency.

    err_t ldc2_get_sensor_frequency ( ldc2_t *ctx, float *freq );

Example Description

This example demonstrates the use of LDC 2 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and configures the Click board.


void application_init ( void )
{
    log_cfg_t log_cfg;      /**< Logger config object. */
    ldc2_cfg_t ldc2_cfg;    /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    Delay_ms ( 100 );
    log_info( &logger, " Application Init " );

    // Click initialization.

    ldc2_cfg_setup( &ldc2_cfg );
    LDC2_MAP_MIKROBUS( ldc2_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == ldc2_init( &ldc2, &ldc2_cfg ) )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    if ( LDC2_ERROR == ldc2_default_cfg ( &ldc2 ) )
    {
        log_error( &logger, " Default Config Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    log_info( &logger, " Application Task " );
}

Application Task

Measures the resonance impedance and proximity as well as the inductance and sensor frequency approximately every 200ms and displays all values on the USB UART.


void application_task ( void )
{
    uint8_t prox_data = 0;
    float rp_data = 0;
    float freq = 0;
    float inductance = 0;

    if ( LDC2_OK == ldc2_measure_resonance_impedance( &ldc2, &prox_data, &rp_data ) )
    {
        log_printf( &logger, " Proximity: %u\r\n Resonance Impedance: %.3f kOhm\r\n\n", ( uint16_t ) prox_data, rp_data );
    }

    if ( LDC2_OK == ldc2_measure_inductance( &ldc2, &freq, &inductance ) )
    {
        log_printf( &logger, " Sensor Frequency: %.3f MHz\r\n Inductance: %.6f uH\r\n\n", freq, inductance );
    }

    Delay_ms ( 200 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LDC2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LR Click

0

LR Click is a compact add-on board that contains a low-power, long-range transceiver. This board features the RN2483, RF technology-based SRD transceiver, which operates at a frequency of 433/868MHz from Microchip Technology. This Click board™ features an embedded LoRaWAN Class A compliant stack, providing a long-range spread spectrum communication with high interference immunity. The RN2483 module is a fully certified 433/868MHz European R&TTE directive assessed radio modem combined with the advanced and straightforward command interface.

[Learn More]

IR Distance click

1

IR distance click carries Sharp’s GP2Y0A60SZ0F distance measuring sensor. The sensor module comprises an integrated PSD (position sensitive detector), an infrared LED and a signal processing circuit. The measuring range is between 10 and 150 cm.The board is designed to use either a 3.3V or a 5V power supply.

[Learn More]

MCP2517FD click

6

MCP2517FD Click is a compact add-on board representing a complete CAN solution used as a control node in a CAN network. This board features the MCP2517FD and ATA6563, an external CAN FD controller with an SPI interface, and a high-speed CAN transceiver from Microchip. The ATA6563, a low-level physical layer IC (PHY), provides a physical connection with the CAN bus itself, while the CAN controller MCP2517FD represents an interface between the MCU and the PHY. It features three operating modes with dedicated fail-safe features, remote wake-up via CAN, and ideally passive behavior when powered off on the CAN bus. This Click board™ is suitable for developing a wide range of automotive diagnostic applications, even on MCUs that don’t support CAN interface.

[Learn More]